Clustering
Unsupervised Learning: Comparative Analysis of Clustering Techniques on High-Dimensional Data
Baligodugula, Vishnu Vardhan, Amsaad, Fathi
--This paper presents a comprehensive comparative analysis of prominent clustering algorithms--K-means, DB-SCAN, and Spectral Clustering--on high-dimensional datasets. We introduce a novel evaluation framework that assesses clustering performance across multiple dimensionality reduction techniques (PCA, t-SNE, and UMAP) using diverse quantitative metrics. Experiments conducted on MNIST, Fashion-MNIST, and UCI HAR datasets reveal that preprocessing with UMAP consistently improves clustering quality across all algorithms, with Spectral Clustering demonstrating superior performance on complex manifold structures. Our findings show that algorithm selection should be guided by data characteristics, with K-means excelling in computational efficiency, DBSCAN in handling irregular clusters, and Spectral Clustering in capturing complex relationships. This research contributes a systematic approach for evaluating and selecting clustering techniques for high-dimensional data applications.
Nearest Neighbour Equilibrium Clustering
A novel and intuitive nearest neighbours based clustering algorithm is introduced, in which a cluster is defined in terms of an equilibrium condition which balances its size and cohesiveness. The formulation of the equilibrium condition allows for a quantification of the strength of alignment of each point to a cluster, with these cluster alignment strengths leading naturally to a model selection criterion which renders the proposed approach fully automatable. The algorithm is simple to implement and computationally efficient, and produces clustering solutions of extremely high quality in comparison with relevant benchmarks from the literature. R code to implement the approach is available from https://github.com/DavidHofmeyr/ I. Introduction Clustering, or cluster analysis, is the task of partitioning a set of data into groups, or clusters, which are seen to be relatively more homogeneous than the data as a whole. Clustering is one of the fundamental data analytic tasks, and forms an integral component of exploratory data analysis. Clustering is also of arguably increasing relevance, as data are increasingly being collected/generated from automated processes, where typically very little prior knowledge is available, making exploratory methods a necessity. In the classical clustering problem there is no explicit information about how the data should be grouped, and various interpretations of how clusters of points may be defined have led to the development of a very large number of methods for identifying them. Almost universally, however, clusters are determined from the geometric properties of the data, with pairs of points which are near to one another typically being seen as likely to be in the same cluster and pairs which are distant more likely to be in different clusters.
KG-FIT: Knowledge Graph Fine-Tuning Upon Open-World Knowledge
Knowledge Graph Embedding (KGE) techniques are crucial in learning compact representations of entities and relations within a knowledge graph, facilitating efficient reasoning and knowledge discovery. While existing methods typically focus either on training KGE models solely based on graph structure or fine-tuning pre-trained language models with classification data in KG, KG-FIT leverages LLM-guided refinement to construct a semantically coherent hierarchical structure of entity clusters.
Evaluate then Cooperate: Shapley-based View Cooperation Enhancement for Multi-view Clustering
The fundamental goal of deep multi-view clustering is to achieve preferable task performance through inter-view cooperation. Although numerous DMVC approaches have been proposed, the collaboration role of individual views have not been well investigated in existing literature. Moreover, how to further enhance view cooperation for better fusion still needs to be explored. In this paper, we firstly consider DMVC as an unsupervised cooperative game where each view can be regarded as a participant. Then, we introduce the Shapley value and propose a novel MVC framework termed Shapley-based Cooperation Enhancing Multi-view Clustering (SCE-MVC), which evaluates view cooperation with game theory. Specially, we employ the optimal transport distance between fused cluster distributions and single view component as the utility function for computing shapley values. Afterwards, we apply shapley values to assess the contribution of each view and utilize these contributions to promote view cooperation. Comprehensive experimental results well support the effectiveness of our framework adopting to existing DMVC frameworks, demonstrating the importance and necessity of enhancing the cooperation among views.
Geometric Analysis of Nonlinear Manifold Clustering Tianjiao Ding
Manifold clustering is an important problem in motion and video segmentation, natural image clustering, and other applications where high-dimensional data lie on multiple, low-dimensional, nonlinear manifolds. While current state-ofthe-art methods on large-scale datasets such as CIFAR provide good empirical performance, they do not have any proof of theoretical correctness. In this work, we propose a method that clusters data belonging to a union of nonlinear manifolds.