Accuracy
Graph-Based Visual Saliency
Harel, Jonathan, Koch, Christof, Perona, Pietro
A new bottom-up visual saliency model, Graph-Based Visual Saliency (GBVS), is proposed. It consists of two steps: rst forming activation maps on certain feature channels, and then normalizing them in a way which highlights conspicuity and admits combination with other maps. The model is simple, and biologically plausible insofaras it is naturally parallelized. This model powerfully predicts human xations on 749 variations of 108 natural images, achieving 98% of the ROC area of a human-based control, whereas the classical algorithms of Itti & Koch ([2], [3], [4]) achieve only 84%.
Unsupervised Learning of a Probabilistic Grammar for Object Detection and Parsing
Chen, Yuanhao, Zhu, Long, Yuille, Alan L.
We describe an unsupervised method for learning a probabilistic grammar of an object from a set of training examples. Our approach is invariant to the scale and rotation of the objects. We illustrate our approach using thirteen objects from the Caltech 101 database. In addition, we learn the model of a hybrid object class where we do not know the specific object or its position, scale or pose. This is illustrated bylearning a hybrid class consisting of faces, motorbikes, and airplanes. The individual objects can be recovered as different aspects of the grammar for the object class.
Nonnegative Sparse PCA
We describe a nonnegative variant of the "Sparse PCA" problem. The goal is to create a low dimensional representation from a collection of points which on the one hand maximizes the variance of the projected points and on the other uses only parts of the original coordinates, and thereby creating a sparse representation. Whatdistinguishes our problem from other Sparse PCA formulations is that the projection involves only nonnegative weights of the original coordinates -- a desired quality in various fields, including economics, bioinformatics and computer vision.Adding nonnegativity contributes to sparseness, where it enforces a partitioning of the original coordinates among the new axes. We describe a simple yetefficient iterative coordinate-descent type of scheme which converges to a local optimum of our optimization criteria, giving good results on large real world datasets.
Max-margin classification of incomplete data
Chechik, Gal, Heitz, Geremy, Elidan, Gal, Abbeel, Pieter, Koller, Daphne
We consider the problem of learning classifiers for structurally incomplete data, where some objects have a subset of features inherently absent due to complex relationships between the features. The common approach for handling missingfeatures is to begin with a preprocessing phase that completes the missing features, and then use a standard classification procedure. In this paper we show how incomplete data can be classified directly without any completion of the missing features using a max-margin learning framework. Weformulate this task using a geometrically-inspired objective function, and discuss two optimization approaches: The linearly separable case is written as a set of convex feasibility problems, and the non-separable case has a non-convex objective that we optimize iteratively. By avoiding the pre-processing phase in which the data is completed, these approaches offer considerable computational savings. More importantly, we show that by elegantly handlingcomplex patterns of missing values, our approach is both competitive with other methods when the values are missing at random and outperforms them when the missing values have nontrivial structure. We demonstrate our results on two real-world problems: edge prediction in metabolic pathways, and automobile detection in natural images.
Aggregating Classification Accuracy across Time: Application to Single Trial EEG
Lemm, Steven, Schรคfer, Christin, Curio, Gabriel
We present a method for binary online classification of triggered but temporally blurredevents that are embedded in noisy time series in the context of online discrimination between left and right imaginary hand-movement. In particular the goal of the binary classification problem is to obtain the decision, as fast and as reliably as possible from the recorded EEG single trials. To provide a probabilistic decision at every time-point t the presented methodgathers information from two distinct sequences of features across time. In order to incorporate decisions from prior time-points we suggest an appropriate weighting scheme, that emphasizes time instances, providing a higher discriminatory power between the instantaneous class distributions of each feature, where the discriminatory power is quantified in terms of the Bayes error of misclassification. The effectiveness of this procedure is verified by its successful application in the 3rd BCI competition. Disclosure of the data after the competition revealed this approach to be superior with single trial error rates as low as 10.7, 11.5 and 16.7% for the three different subjects under study.
Pac-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning
This monograph deals with adaptive supervised classification, using tools borrowed from statistical mechanics and information theory, stemming from the PACBayesian approach pioneered by David McAllester and applied to a conception of statistical learning theory forged by Vladimir Vapnik. Using convex analysis on the set of posterior probability measures, we show how to get local measures of the complexity of the classification model involving the relative entropy of posterior distributions with respect to Gibbs posterior measures. We then discuss relative bounds, comparing the generalization error of two classification rules, showing how the margin assumption of Mammen and Tsybakov can be replaced with some empirical measure of the covariance structure of the classification model.We show how to associate to any posterior distribution an effective temperature relating it to the Gibbs prior distribution with the same level of expected error rate, and how to estimate this effective temperature from data, resulting in an estimator whose expected error rate converges according to the best possible power of the sample size adaptively under any margin and parametric complexity assumptions. We describe and study an alternative selection scheme based on relative bounds between estimators, and present a two step localization technique which can handle the selection of a parametric model from a family of those. We show how to extend systematically all the results obtained in the inductive setting to transductive learning, and use this to improve Vapnik's generalization bounds, extending them to the case when the sample is made of independent non-identically distributed pairs of patterns and labels. Finally we review briefly the construction of Support Vector Machines and show how to derive generalization bounds for them, measuring the complexity either through the number of support vectors or through the value of the transductive or inductive margin.
Optimal Solutions for Sparse Principal Component Analysis
d'Aspremont, Alexandre, Bach, Francis, Ghaoui, Laurent El
Given a sample covariance matrix, we examine the problem of maximizing the variance explained by a linear combination of the input variables while constraining the number of nonzero coefficients in this combination. This is known as sparse principal component analysis and has a wide array of applications in machine learning and engineering. We formulate a new semidefinite relaxation to this problem and derive a greedy algorithm that computes a full set of good solutions for all target numbers of non zero coefficients, with total complexity O(n^3), where n is the number of variables. We then use the same relaxation to derive sufficient conditions for global optimality of a solution, which can be tested in O(n^3) per pattern. We discuss applications in subset selection and sparse recovery and show on artificial examples and biological data that our algorithm does provide globally optimal solutions in many cases.
Learning Probabilistic Models of Word Sense Disambiguation
This dissertation presents several new methods of supervised and unsupervised learning of word sense disambiguation models. The supervised methods focus on performing model searches through a space of probabilistic models, and the unsupervised methods rely on the use of Gibbs Sampling and the Expectation Maximization (EM) algorithm. In both the supervised and unsupervised case, the Naive Bayesian model is found to perform well. An explanation for this success is presented in terms of learning rates and bias-variance decompositions.
A tutorial on conformal prediction
Conformal prediction uses past experience to determine precise levels of confidence in new predictions. Given an error probability $\epsilon$, together with a method that makes a prediction $\hat{y}$ of a label $y$, it produces a set of labels, typically containing $\hat{y}$, that also contains $y$ with probability $1-\epsilon$. Conformal prediction can be applied to any method for producing $\hat{y}$: a nearest-neighbor method, a support-vector machine, ridge regression, etc. Conformal prediction is designed for an on-line setting in which labels are predicted successively, each one being revealed before the next is predicted. The most novel and valuable feature of conformal prediction is that if the successive examples are sampled independently from the same distribution, then the successive predictions will be right $1-\epsilon$ of the time, even though they are based on an accumulating dataset rather than on independent datasets. In addition to the model under which successive examples are sampled independently, other on-line compression models can also use conformal prediction. The widely used Gaussian linear model is one of these. This tutorial presents a self-contained account of the theory of conformal prediction and works through several numerical examples. A more comprehensive treatment of the topic is provided in "Algorithmic Learning in a Random World", by Vladimir Vovk, Alex Gammerman, and Glenn Shafer (Springer, 2005).