Goto

Collaborating Authors

 Bayesian Learning







Performance of Synthetic Neural Network Classification of Noisy Radar Signals

Neural Information Processing Systems

This study evaluates the performance of the multilayer-perceptron and the frequency-sensitive competitive learning network in identifying five commercial aircraft from radar backscatter measurements. The performance of the neural network classifiers is compared with that of the nearest-neighbor and maximum-likelihood classifiers. Our results indicate that for this problem, the neural network classifiers are relatively insensitive to changes in the network topology, and to the noise level in the training data. While, for this problem, the traditional algorithms outperform these simple neural classifiers, we feel that neural networks show the potential for improved performance.


Performance of Synthetic Neural Network Classification of Noisy Radar Signals

Neural Information Processing Systems

This study evaluates the performance of the multilayer-perceptron and the frequency-sensitive competitive learning network in identifying five commercial aircraft from radar backscatter measurements. The performance of the neural network classifiers is compared with that of the nearest-neighbor and maximum-likelihood classifiers. Our results indicate that for this problem, the neural network classifiers are relatively insensitive to changes in the network topology, and to the noise level in the training data. While, for this problem, the traditional algorithms outperform these simple neural classifiers, we feel that neural networks show the potential for improved performance.




HUGIN: A shell for building Bayesian belief universes for expert systems

Classics

Causal probabilistic networks have proved to be a useful knowledge representation tool for modelling domains where causal relations in a broad sense are a natural way of relating domain objects and where uncertainty is inherited in these relations. This paper outlines an implementation the HUGIN shell--for handling a domain model expressed by a causal probabilistic network. The only topological restriction imposed on the network is that, it must not contain any directed loops. The approach is illustrated step by step by solving a. genetic breeding problem. A graph representation of the domain model is interactively created by using instances of the basic network components—nodes and arcs—as building blocks. This structure, together with the quantitative relations between nodes and their immediate causes expressed as conditional probabilities, are automatically transformed into a tree structure, a junction tree. Here a computationally efficient and conceptually simple algebra of Bayesian belief universes supports incorporation of new evidence, propagation of information, and calculation of revised beliefs in the states of the nodes in the network. Finally, as an example of a real world application, MUN1N an expert system for electromyography is discussed.IJCAI-89, Vol. 2, pp. 1080–1085