Goto

Collaborating Authors

 Bayesian Learning


Dissecting the Interplay of Attention Paths in a Statistical Mechanics Theory of Transformers Lorenzo Tiberi Francesca Mignacco 3,4

Neural Information Processing Systems

Despite the remarkable empirical performance of transformers, their theoretical understanding remains elusive. Here, we consider a deep multi-head self-attention network, that is closely related to transformers yet analytically tractable. We develop a statistical mechanics theory of Bayesian learning in this model, deriving exact equations for the network's predictor statistics under the finite-width thermodynamic limit, i.e., N, P, P/N = O(1), where N is the network width and P is the number of training examples. Our theory shows that the predictor statistics are expressed as a sum of independent kernels, each one pairing different attention paths, defined as information pathways through different attention heads across layers. The kernels are weighted according to a task-relevant kernel combination mechanism that aligns the total kernel with the task labels. As a consequence, this interplay between attention paths enhances generalization performance. Experiments confirm our findings on both synthetic and real-world sequence classification tasks. Finally, our theory explicitly relates the kernel combination mechanism to properties of the learned weights, allowing for a qualitative transfer of its insights to models trained via gradient descent. As an illustration, we demonstrate an efficient size reduction of the network, by pruning those attention heads that are deemed less relevant by our theory.


Overleaf Example

Neural Information Processing Systems

Datasets often suffer severe selection bias; clinical labels are only available on patients for whom doctors ordered medical exams. To assess model performance outside the support of available data, we present a computational framework for adaptive labeling, providing cost-efficient model evaluations under severe distribution shifts. We formulate the problem as a Markov Decision Process over states defined by posterior beliefs on model performance. Each batch of new labels incurs a "state transition" to sharper beliefs, and we choose batches to minimize uncertainty on model performance at the end of the label collection process. Instead of relying on high-variance REINFORCE policy gradient estimators that do not scale, our adaptive labeling policy is optimized using path-wise policy gradients computed by auto-differentiating through simulated roll-outs. Our framework is agnostic to different uncertainty quantification approaches and highlights the virtue of planning in adaptive labeling. On synthetic and real datasets, we empirically demonstrate even a one-step lookahead policy substantially outperforms active learning-inspired heuristics.


Deterministic Uncertainty Propagation for Improved Model-Based Offline Reinforcement Learning

Neural Information Processing Systems

Current approaches to model-based offline reinforcement learning often incorporate uncertainty-based reward penalization to address the distributional shift problem. These approaches, commonly known as pessimistic value iteration, use Monte Carlo sampling to estimate the Bellman target to perform temporal difference-based policy evaluation. We find out that the randomness caused by this sampling step significantly delays convergence. We present a theoretical result demonstrating the strong dependency of suboptimality on the number of Monte Carlo samples taken per Bellman target calculation. Our main contribution is a deterministic approximation to the Bellman target that uses progressive moment matching, a method developed originally for deterministic variational inference. The resulting algorithm, which we call Moment Matching Offline Model-Based Policy Optimization (MOMBO), propagates the uncertainty of the next state through a nonlinear Q-network in a deterministic fashion by approximating the distributions of hidden layer activations by a normal distribution. We show that it is possible to provide tighter guarantees for the suboptimality of MOMBO than the existing Monte Carlo sampling approaches. We also observe MOMBO to converge faster than these approaches in a large set of benchmark tasks.


Qualitative Mechanism Independence

Neural Information Processing Systems

We define what it means for a joint probability distribution to be (QIM-)compatible with a set of independent causal mechanisms, at a qualitative level--or, more precisely, with a directed hypergraph A, which is the qualitative structure of a probabilistic dependency graph (PDG). When A represents a qualitative Bayesian network, QIM-compatibility with A reduces to satisfying the appropriate conditional independencies. But giving semantics to hypergraphs using QIM-compatibility lets us do much more. For one thing, we can capture functional dependencies. For another, QIM-compatibility captures important aspects of causality: we can use compatibility to understand cyclic causal graphs, and to demonstrate compatibility is essentially to produce a causal model. Finally, compatibility has deep connections to information theory. Applying compatibility to cyclic structures helps to clarify a longstanding conceptual issue in information theory.


Bias Detection via Signaling Yiling Chen Tao Lin Ariel D. Procaccia Harvard University

Neural Information Processing Systems

We introduce and study the problem of detecting whether an agent is updating their prior beliefs given new evidence in an optimal way that is Bayesian, or whether they are biased towards their own prior. In our model, biased agents form posterior beliefs that are a convex combination of their prior and the Bayesian posterior, where the more biased an agent is, the closer their posterior is to the prior. Since we often cannot observe the agent's beliefs directly, we take an approach inspired by information design. Specifically, we measure an agent's bias by designing a signaling scheme and observing the actions the agent takes in response to different signals, assuming that the agent maximizes their own expected utility. Our goal is to detect bias with a minimum number of signals. Our main results include a characterization of scenarios where a single signal suffices and a computationally efficient algorithm to compute optimal signaling schemes.



Sequence-to-Set Generative Models

Neural Information Processing Systems

In this paper, we propose a sequence-to-set method that can transform any sequence generative model based on maximum likelihood to a set generative model where we can evaluate the utility/probability of any set. An efficient importance sampling algorithm is devised to tackle the computational challenge of learning our sequenceto-set model. We present GRU2Set, which is an instance of our sequence-to-set method and employs the famous GRU model as the sequence generative model. To further obtain permutation invariant representation of sets, we devise the SetNN model which is also an instance of the sequence-to-set model. A direct application of our models is to learn an order/set distribution from a collection of e-commerce orders, which is an essential step in many important operational decisions such as inventory arrangement for fast delivery.


Sequence-to-Set Generative Models

Neural Information Processing Systems

In this paper, we propose a sequence-to-set method that can transform any sequence generative model based on maximum likelihood to a set generative model where we can evaluate the utility/probability of any set. An efficient importance sampling algorithm is devised to tackle the computational challenge of learning our sequenceto-set model. We present GRU2Set, which is an instance of our sequence-to-set method and employs the famous GRU model as the sequence generative model. To further obtain permutation invariant representation of sets, we devise the SetNN model which is also an instance of the sequence-to-set model. A direct application of our models is to learn an order/set distribution from a collection of e-commerce orders, which is an essential step in many important operational decisions such as inventory arrangement for fast delivery.


Abductive Reasoning in Logical Credal Networks

Neural Information Processing Systems

Logical Credal Networks or LCNs were recently introduced as a powerful probabilistic logic framework for representing and reasoning with imprecise knowledge. Unlike many existing formalisms, LCNs have the ability to represent cycles and allow specifying marginal and conditional probability bounds on logic formulae which may be important in many realistic scenarios. Previous work on LCNs has focused exclusively on marginal inference, namely computing posterior lower and upper probability bounds on a query formula. In this paper, we explore abductive reasoning tasks such as solving MAP and Marginal MAP queries in LCNs given some evidence. We first formally define the MAP and Marginal MAP tasks for LCNs and subsequently show how to solve these tasks exactly using search-based approaches. We then propose several approximate schemes that allow us to scale MAP and Marginal MAP inference to larger problem instances. An extensive empirical evaluation demonstrates the effectiveness of our algorithms on both random LCN instances as well as LCNs derived from more realistic use-cases.


FuseMoE: Mixture-of-Experts Transformers for Fleximodal Fusion

Neural Information Processing Systems

As machine learning models in critical fields increasingly grapple with multimodal data, they face the dual challenges of handling a wide array of modalities, often incomplete due to missing elements, and the temporal irregularity and sparsity of collected samples. Successfully leveraging this complex data, while overcoming the scarcity of high-quality training samples, is key to improving these models' predictive performance. We introduce "FuseMoE", a mixture-of-experts framework incorporated with an innovative gating function. Designed to integrate a diverse number of modalities, FuseMoE is effective in managing scenarios with missing modalities and irregularly sampled data trajectories. Theoretically, our unique gating function contributes to enhanced convergence rates, leading to better performance in multiple downstream tasks. The practical utility of FuseMoE in the real world is validated by a diverse set of challenging prediction tasks.