Goto

Collaborating Authors

 Bayesian Learning


The Problem With Early Cancer Detection

The New Yorker

The discovery began, as many breakthroughs do, with an observation that didn't quite make sense. In 1948, two French researchers, Paul Mandel and Pierre Mรฉtais, published a little-noticed paper in a scientific journal. Working in a laboratory in Strasbourg, they had been cataloguing the chemical contents of blood plasma--that river of life teeming with proteins, sugars, waste, nutrients, and cellular debris. Amid this familiar inventory, they'd spotted an unexpected presence: fragments of DNA drifting freely. The finding defied biological orthodoxy. DNA was thought to remain locked inside the nuclei of cells, and not float around on its own.


Scan Order in Gibbs Sampling: Models in Which it Matters and Bounds on How Much

Neural Information Processing Systems

Gibbs sampling is a Markov Chain Monte Carlo sampling technique that iteratively samples variables from their conditional distributions. There are two common scan orders for the variables: random scan and systematic scan. Due to the benefits of locality in hardware, systematic scan is commonly used, even though most statistical guarantees are only for random scan. While it has been conjectured that the mixing times of random scan and systematic scan do not differ by more than a logarithmic factor, we show by counterexample that this is not the case, and we prove that that the mixing times do not differ by more than a polynomial factor under mild conditions. To prove these relative bounds, we introduce a method of augmenting the state space to study systematic scan using conductance.


Learning Treewidth-Bounded Bayesian Networks with Thousands of Variables

Neural Information Processing Systems

We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and to large treewidths. Our novel approach consistently outperforms the state of the art on experiments with up to thousands of variables.


Learning Infinite RBMs with Frank-Wolfe

Neural Information Processing Systems

In this work, we propose an infinite restricted Boltzmann machine (RBM), whose maximum likelihood estimation (MLE) corresponds to a constrained convex optimization. We consider the Frank-Wolfe algorithm to solve the program, which provides a sparse solution that can be interpreted as inserting a hidden unit at each iteration, so that the optimization process takes the form of a sequence of finite models of increasing complexity. As a side benefit, this can be used to easily and efficiently identify an appropriate number of hidden units during the optimization. The resulting model can also be used as an initialization for typical state-of-the-art RBM training algorithms such as contrastive divergence, leading to models with consistently higher test likelihood than random initialization.


A Bayesian method for reducing bias in neural representational similarity analysis

Neural Information Processing Systems

In neuroscience, the similarity matrix of neural activity patterns in response to different sensory stimuli or under different cognitive states reflects the structure of neural representational space. Existing methods derive point estimations of neural activity patterns from noisy neural imaging data, and the similarity is calculated from these point estimations. We show that this approach translates structured noise from estimated patterns into spurious bias structure in the resulting similarity matrix, which is especially severe when signal-to-noise ratio is low and experimental conditions cannot be fully randomized in a cognitive task. We propose an alternative Bayesian framework for computing representational similarity in which we treat the covariance structure of neural activity patterns as a hyper-parameter in a generative model of the neural data, and directly estimate this covariance structure from imaging data while marginalizing over the unknown activity patterns. Converting the estimated covariance structure into a correlation matrix offers a much less biased estimate of neural representational similarity.


Near-Optimal Smoothing of Structured Conditional Probability Matrices

Neural Information Processing Systems

Utilizing the structure of a probabilistic model can significantly increase its learning speed. Motivated by several recent applications, in particular bigram models in language processing, we consider learning low-rank conditional probability matrices under expected KL-risk. This choice makes smoothing, that is the careful handling of low-probability elements, paramount. We derive an iterative algorithm that extends classical non-negative matrix factorization to naturally incorporate additive smoothing and prove that it converges to the stationary points of a penalized empirical risk. We then derive sample-complexity bounds for the global minimizer of the penalized risk and show that it is within a small factor of the optimal sample complexity.


A Unified Approach for Learning the Parameters of Sum-Product Networks

Neural Information Processing Systems

We present a unified approach for learning the parameters of Sum-Product networks (SPNs). We prove that any complete and decomposable SPN is equivalent to a mixture of trees where each tree corresponds to a product of univariate distributions. Based on the mixture model perspective, we characterize the objective function when learning SPNs based on the maximum likelihood estimation (MLE) principle and show that the optimization problem can be formulated as a signomial program. We construct two parameter learning algorithms for SPNs by using sequential monomial approximations (SMA) and the concave-convex procedure (CCCP), respectively. The two proposed methods naturally admit multiplicative updates, hence effectively avoiding the projection operation.


Reward Augmented Maximum Likelihood for Neural Structured Prediction

Neural Information Processing Systems

A key problem in structured output prediction is enabling direct optimization of the task reward function that matters for test evaluation. This paper presents a simple and computationally efficient method that incorporates task reward into maximum likelihood training. We establish a connection between maximum likelihood and regularized expected reward, showing that they are approximately equivalent in the vicinity of the optimal solution. Then we show how maximum likelihood can be generalized by optimizing the conditional probability of auxiliary outputs that are sampled proportional to their exponentiated scaled rewards. We apply this framework to optimize edit distance in the output space, by sampling from edited targets.


Iterative Refinement of the Approximate Posterior for Directed Belief Networks

Neural Information Processing Systems

Variational methods that rely on a recognition network to approximate the posterior of directed graphical models offer better inference and learning than previous methods. Recent advances that exploit the capacity and flexibility in this approach have expanded what kinds of models can be trained. However, as a proposal for the posterior, the capacity of the recognition network is limited, which can constrain the representational power of the generative model and increase the variance of Monte Carlo estimates. To address these issues, we introduce an iterative refinement procedure for improving the approximate posterior of the recognition network and show that training with the refined posterior is competitive with state-of-the-art methods. The advantages of refinement are further evident in an increased effective sample size, which implies a lower variance of gradient estimates.