Bayesian Learning

Top 5 Skills Needed to Become a Machine Learning Engineer Analytics Insight


We are living in the realm of people and machines. People have been developing and gaining from their past experience for many years. Then again, the period of machines and robots have quite recently started. The eventual fate of machine is tremendous and is past our extent of creative ability. We leave this extraordinary responsibility on the shoulder of a specific individual to be precise, Machine Learning Engineer.

Posterior Probability


In statistics, the posterior probability expresses how likely a hypothesis is given a particular set of data. This contrasts with the likelihood function, which is represented as P(D H). This distinction is more of an interpretation rather than a mathematical property as both have the form of conditional probability. In order to calculate the posterior probability, we use Bayes theorem, which is discussed below. Bayes theorem, which is the probability of a hypothesis given some prior observable data, relies on the use of likelihood P(D H) alongside the prior P(H) and marginal likelihood P(D) in order to calculate the posterior P(H D).

Dealing with the Lack of Data in Machine Learning


In many projects, I realized that companies have fantastic business AI ideas but slowly become frustrated when they realize that they don't have enough data… However, solutions do exist! My goal in this article is to briefly introduce you to some of them (the ones that I used the most) rather than listing all existing solutions. This problem of data scarcity is really important since data is at the core of any AI projects. The dataset size is often responsible for poor performances in ML projects. Most of the time, data related issues are the main reason why great AI projects cannot be achieved.

Probability and Statistics explained in the context of deep learning


This article is intended for beginners in deep learning who wish to gain knowledge about probability and statistics and also as a reference for practitioners. In my previous article, I wrote about the concepts of linear algebra for deep learning in a top down approach ( link for the article) (If you do not have enough idea about linear algebra, please read that first).The same top down approach is used here.Providing the description of use cases first and then the concepts. All the example code uses python and numpy.Formulas are provided as images for reuse. Probability is the science of quantifying uncertain things.Most of machine learning and deep learning systems utilize a lot of data to learn about patterns in the data.Whenever data is utilized in a system rather than sole logic, uncertainty grows up and whenever uncertainty grows up, probability becomes relevant. By introducing probability to a deep learning system, we introduce common sense to the system.Otherwise the system would be very brittle and will not be useful.In deep learning, several models like bayesian models, probabilistic graphical models, hidden markov models are used.They depend entirely on probability concepts.

Inter-time segment information sharing for non-homogeneous dynamic Bayesian networks

Neural Information Processing Systems

Conventional dynamic Bayesian networks (DBNs) are based on the homogeneous Markov assumption, which is too restrictive in many practical applications. Various approaches to relax the homogeneity assumption have therefore been proposed in the last few years. The present paper aims to improve the flexibility of two recent versions of non-homogeneous DBNs, which either (i) suffer from the need for data discretization, or (ii) assume a time-invariant network structure. Allowing the network structure to be fully flexible leads to the risk of overfitting and inflated inference uncertainty though, especially in the highly topical field of systems biology, where independent measurements tend to be sparse. In the present paper we investigate three conceptually different regularization schemes based on inter-segment information sharing.

Near-Optimal Bayesian Active Learning with Noisy Observations

Neural Information Processing Systems

We tackle the fundamental problem of Bayesian active learning with noise, where we need to adaptively select from a number of expensive tests in order to identify an unknown hypothesis sampled from a known prior distribution. In the case of noise-free observations, a greedy algorithm called generalized binary search (GBS) is known to perform near-optimally. We show that if the observations are noisy, perhaps surprisingly, GBS can perform very poorly. We develop EC2, a novel, greedy active learning algorithm and prove that it is competitive with the optimal policy, thus obtaining the first competitiveness guarantees for Bayesian active learning with noisy observations. Our bounds rely on a recently discovered diminishing returns property called adaptive submodularity, generalizing the classical notion of submodular set functions to adaptive policies.

Bayesian models in R


If there was something that always frustrated me was not fully understanding Bayesian inference. Sometime last year, I came across an article about a TensorFlow-supported R package for Bayesian analysis, called greta. Back then, I searched for greta tutorials and stumbled on this blog post that praised a textbook called Statistical Rethinking: A Bayesian Course with Examples in R and Stan by Richard McElreath. I had found a solution to my lingering frustration so I bought a copy straight away. I spent the last few months reading it cover to cover and solving the proposed exercises, which are heavily based on the rethinking package. I cannot recommend it highly enough to whoever seeks a solid grip on Bayesian statistics, both in theory and application. This post ought to be my most gratifying blogging experience so far, in that I am essentially reporting my own recent learning. I am convinced this will make the storytelling all the more effective. As a demonstration, the female cuckoo reproductive output data recently analysed by Riehl et al., 2019 [1] will be modelled using In the process, we will conduct the MCMC sampling, visualise posterior distributions, generate predictions and ultimately assess the influence of social parasitism in female reproductive output. You should have some familiarity with standard statistical models.

Fully Automatic Brain Tumor Segmentation using a Normalized Gaussian Bayesian Classifier and 3D Fluid Vector Flow Machine Learning

Brain tumor segmentation from Magnetic Resonance Images (MRIs) is an important task to measure tumor responses to treatments. However, automatic segmentation is very challenging. This paper presents an automatic brain tumor segmentation method based on a Normalized Gaussian Bayesian classification and a new 3D Fluid Vector Flow (FVF) algorithm. In our method, a Normalized Gaussian Mixture Model (NGMM) is proposed and used to model the healthy brain tissues. Gaussian Bayesian Classifier is exploited to acquire a Gaussian Bayesian Brain Map (GBBM) from the test brain MR images. GBBM is further processed to initialize the 3D FVF algorithm, which segments the brain tumor. This algorithm has two major contributions. First, we present a NGMM to model healthy brains. Second, we extend our 2D FVF algorithm to 3D space and use it for brain tumor segmentation. The proposed method is validated on a publicly available dataset.

Model Comparison for Semantic Grouping Machine Learning

We introduce a probabilistic framework for quantifying the semantic similarity between two groups of embeddings. We formulate the task of semantic similarity as a model comparison task in which we contrast a generative model which jointly models two sentences versus one that does not. We illustrate how this framework can be used for the Semantic Textual Similarity tasks using clear assumptions about how the embeddings of words are generated. We apply model comparison that utilises information criteria to address some of the shortcomings of Bayesian model comparison, whilst still penalising model complexity. We achieve competitive results by applying the proposed framework with an appropriate choice of likelihood on the STS datasets.

Online Causal Structure Learning in the Presence of Latent Variables Artificial Intelligence

We present two online causal structure learning algorithms which can track changes in a causal structure and process data in a dynamic real-time manner. Standard causal structure learning algorithms assume that causal structure does not change during the data collection process, but in real-world scenarios, it does often change. Therefore, it is inappropriate to handle such changes with existing batch-learning approaches, and instead, a structure should be learned in an online manner. The online causal structure learning algorithms we present here can revise correlation values without reprocessing the entire dataset and use an existing model to avoid relearning the causal links in the prior model, which still fit data. Proposed algorithms are tested on synthetic and real-world datasets, the latter being a seasonally adjusted commodity price index dataset for the U.S. The online causal structure learning algorithms outperformed standard FCI by a large margin in learning the changed causal structure correctly and efficiently when latent variables were present.