Goto

Collaborating Authors

 Forecasting


Inter-Series Transformer: Attending to Products in Time Series Forecasting

arXiv.org Artificial Intelligence

Time series forecasting is an important task in many fields ranging from supply chain management to weather forecasting. Recently, Transformer neural network architectures have shown promising results in forecasting on common time series benchmark datasets. However, application to supply chain demand forecasting, which can have challenging characteristics such as sparsity and cross-series effects, has been limited. In this work, we explore the application of Transformer-based models to supply chain demand forecasting. In particular, we develop a new Transformer-based forecasting approach using a shared, multi-task per-time series network with an initial component applying attention across time series, to capture interactions and help address sparsity. We provide a case study applying our approach to successfully improve demand prediction for a medical device manufacturing company. To further validate our approach, we also apply it to public demand forecasting datasets as well and demonstrate competitive to superior performance compared to a variety of baseline and state-of-the-art forecast methods across the private and public datasets.


Job-SDF: A Multi-Granularity Dataset for Job Skill Demand Forecasting and Benchmarking

arXiv.org Artificial Intelligence

In a rapidly evolving job market, skill demand forecasting is crucial as it enables policymakers and businesses to anticipate and adapt to changes, ensuring that workforce skills align with market needs, thereby enhancing productivity and competitiveness. Additionally, by identifying emerging skill requirements, it directs individuals towards relevant training and education opportunities, promoting continuous self-learning and development. However, the absence of comprehensive datasets presents a significant challenge, impeding research and the advancement of this field. To bridge this gap, we present Job-SDF, a dataset designed to train and benchmark job-skill demand forecasting models. Based on 10.35 million public job advertisements collected from major online recruitment platforms in China between 2021 and 2023, this dataset encompasses monthly recruitment demand for 2,324 types of skills across 521 companies. Our dataset uniquely enables evaluating skill demand forecasting models at various granularities, including occupation, company, and regional levels. We benchmark a range of models on this dataset, evaluating their performance in standard scenarios, in predictions focused on lower value ranges, and in the presence of structural breaks, providing new insights for further research.


A Scalable and Transferable Time Series Prediction Framework for Demand Forecasting

arXiv.org Artificial Intelligence

Time series forecasting is one of the most essential and ubiquitous tasks in many business problems, including demand forecasting and logistics optimization. Traditional time series forecasting methods, however, have resulted in small models with limited expressive power because they have difficulty in scaling their model size up while maintaining high accuracy. In this paper, we propose Forecasting orchestra (Forchestra), a simple but powerful framework capable of accurately predicting future demand for a diverse range of items. We empirically demonstrate that the model size is scalable to up to 0.8 billion parameters. The proposed method not only outperforms existing forecasting models with a significant margin, but it could generalize well to unseen data points when evaluated in a zero-shot fashion on downstream datasets. Last but not least, we present extensive qualitative and quantitative studies to analyze how the proposed model outperforms baseline models and differs from conventional approaches. The original paper was presented as a full paper at ICDM 2022 and is available at: https://ieeexplore.ieee.org/document/10027662.


Probabilistic Demand Forecasting with Graph Neural Networks

arXiv.org Artificial Intelligence

Demand forecasting is a prominent business use case that allows retailers to optimize inventory planning, logistics, and core business decisions. One of the key challenges in demand forecasting is accounting for relationships and interactions between articles. Most modern forecasting approaches provide independent article-level predictions that do not consider the impact of related articles. Recent research has attempted addressing this challenge using Graph Neural Networks (GNNs) and showed promising results. This paper builds on previous research on GNNs and makes two contributions. First, we integrate a GNN encoder into a state-of-the-art DeepAR model. The combined model produces probabilistic forecasts, which are crucial for decision-making under uncertainty. Second, we propose to build graphs using article attribute similarity, which avoids reliance on a pre-defined graph structure. Experiments on three real-world datasets show that the proposed approach consistently outperforms non-graph benchmarks. We also show that our approach produces article embeddings that encode article similarity and demand dynamics and are useful for other downstream business tasks beyond forecasting.


Quantitative Technology Forecasting: a Review of Trend Extrapolation Methods

arXiv.org Artificial Intelligence

Quantitative technology forecasting uses quantitative methods to understand and project technological changes. It is a broad field encompassing many different techniques and has been applied to a vast range of technologies. A widely used approach in this field is trend extrapolation. Based on the publications available to us, there has been little or no attempt made to systematically review the empirical evidence on quantitative trend extrapolation techniques. This study attempts to close this gap by conducting a systematic review of technology forecasting literature addressing the application of quantitative trend extrapolation techniques. We identified 25 studies relevant to the objective of this research and classified the techniques used in the studies into different categories, among which growth curves and time series methods were shown to remain popular over the past decade, while newer methods, such as machine learning-based hybrid models, have emerged in recent years. As more effort and evidence are needed to determine if hybrid models are superior to traditional methods, we expect to see a growing trend in the development and application of hybrid models to technology forecasting.


Textual-Knowledge-Guided Numerical Feature Discovery Method for Power Demand Forecasting

arXiv.org Artificial Intelligence

Power demand forecasting is a crucial and challenging task for new power system and integrated energy system. However, as public feature databases and the theoretical mechanism of power demand changes are unavailable, the known features of power demand fluctuation are much limited. Recently, multimodal learning approaches have shown great vitality in machine learning and AIGC. In this paper, we interact two modal data and propose a textual-knowledge-guided numerical feature discovery (TKNFD) method for short-term power demand forecasting. TKNFD extensively accumulates qualitative textual knowledge, expands it into a candidate feature-type set, collects numerical data of these features, and eventually builds four-dimensional multivariate source-tracking databases (4DM-STDs). Next, TKNFD presents a two-level quantitative feature identification strategy independent of forecasting models, finds 43-48 features, and systematically analyses feature contribution and dependency correlation. Benchmark experiments in two different regions around the world demonstrate that the forecasting accuracy of TKNFD-discovered features reliably outperforms that of SoTA feature schemes by 16.84% to 36.36% MAPE. In particular, TKNFD reveals many unknown features, especially several dominant features in the unknown energy and astronomical dimensions, which extend the knowledge on the origin of strong randomness and non-linearity in power demand fluctuation. Besides, 4DM-STDs can serve as public baseline databases.


Telescope: An Automated Hybrid Forecasting Approach on a Level-Playing Field

arXiv.org Artificial Intelligence

In many areas of decision-making, forecasting is an essential pillar. Consequently, many different forecasting methods have been proposed. From our experience, recently presented forecasting methods are computationally intensive, poorly automated, tailored to a particular data set, or they lack a predictable time-to-result. To this end, we introduce Telescope, a novel machine learning-based forecasting approach that automatically retrieves relevant information from a given time series and splits it into parts, handling each of them separately. In contrast to deep learning methods, our approach doesn't require parameterization or the need to train and fit a multitude of parameters. It operates with just one time series and provides forecasts within seconds without any additional setup. Our experiments show that Telescope outperforms recent methods by providing accurate and reliable forecasts while making no assumptions about the analyzed time series.


Travel Demand Forecasting: A Fair AI Approach

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) and machine learning have been increasingly adopted for travel demand forecasting. The AI-based travel demand forecasting models, though generate accurate predictions, may produce prediction biases and raise fairness issues. Using such biased models for decision-making may lead to transportation policies that exacerbate social inequalities. However, limited studies have been focused on addressing the fairness issues of these models. Therefore, in this study, we propose a novel methodology to develop fairness-aware, highly-accurate travel demand forecasting models. Particularly, the proposed methodology can enhance the fairness of AI models for multiple protected attributes (such as race and income) simultaneously. Specifically, we introduce a new fairness regularization term, which is explicitly designed to measure the correlation between prediction accuracy and multiple protected attributes, into the loss function of the travel demand forecasting model. We conduct two case studies to evaluate the performance of the proposed methodology using real-world ridesourcing-trip data in Chicago, IL and Austin, TX, respectively. Results highlight that our proposed methodology can effectively enhance fairness for multiple protected attributes while preserving prediction accuracy. Additionally, we have compared our methodology with three state-of-the-art methods that adopt the regularization term approach, and the results demonstrate that our approach significantly outperforms them in both preserving prediction accuracy and enhancing fairness. This study can provide transportation professionals with a new tool to achieve fair and accurate travel demand forecasting.


Retail Demand Forecasting: A Comparative Study for Multivariate Time Series

arXiv.org Artificial Intelligence

Accurate demand forecasting in the retail industry is a critical determinant of financial performance and supply chain efficiency. As global markets become increasingly interconnected, businesses are turning towards advanced prediction models to gain a competitive edge. However, existing literature mostly focuses on historical sales data and ignores the vital influence of macroeconomic conditions on consumer spending behavior. In this study, we bridge this gap by enriching time series data of customer demand with macroeconomic variables, such as the Consumer Price Index (CPI), Index of Consumer Sentiment (ICS), and unemployment rates. Leveraging this comprehensive dataset, we develop and compare various regression and machine learning models to predict retail demand accurately.


Stochastic MPC for energy hubs using data driven demand forecasting

arXiv.org Artificial Intelligence

Energy hubs convert and distribute energy resources by combining different energy inputs through multiple conversion and storage components. The optimal operation of the energy hub exploits its flexibility to increase the energy efficiency and reduce the operational costs. However, uncertainties in the demand present challenges to energy hub optimization. In this paper, we propose a stochastic MPC controller to minimize energy costs using chance constraints for the uncertain electricity and thermal demands. Historical data is used to build a demand prediction model based on Gaussian processes to generate a forecast of the future electricity and heat demands. The stochastic optimization problem is solved via the Scenario Approach by sampling multi-step demand trajectories from the derived prediction model. The performance of the proposed predictor and of the stochastic controller is verified on a simulated energy hub model and demand data from a real building.