Goto

Collaborating Authors

 Forecasting


Job-SDF: A Multi-Granularity Dataset for Job Skill Demand Forecasting and Benchmarking Xi Chen

Neural Information Processing Systems

In a rapidly evolving job market, skill demand forecasting is crucial as it enables policymakers and businesses to anticipate and adapt to changes, ensuring that workforce skills align with market needs, thereby enhancing productivity and competitiveness. Additionally, by identifying emerging skill requirements, it directs individuals towards relevant training and education opportunities, promoting continuous self-learning and development. However, the absence of comprehensive datasets presents a significant challenge, impeding research and the advancement of this field. To bridge this gap, we present Job-SDF, a dataset designed to train and benchmark job-skill demand forecasting models. Based on millions of public job advertisements collected from online recruitment platforms, this dataset encompasses monthly recruitment demand. Our dataset uniquely enables evaluating skill demand forecasting models at various granularities, including occupation, company, and regional levels. We benchmark a range of models on this dataset, evaluating their performance in standard scenarios, in predictions focused on lower value ranges, and in the presence of structural breaks, providing new insights for further research.


Job-SDF: A Multi-Granularity Dataset for Job Skill Demand Forecasting and Benchmarking Xi Chen

Neural Information Processing Systems

In a rapidly evolving job market, skill demand forecasting is crucial as it enables policymakers and businesses to anticipate and adapt to changes, ensuring that workforce skills align with market needs, thereby enhancing productivity and competitiveness. Additionally, by identifying emerging skill requirements, it directs individuals towards relevant training and education opportunities, promoting continuous self-learning and development. However, the absence of comprehensive datasets presents a significant challenge, impeding research and the advancement of this field. To bridge this gap, we present Job-SDF, a dataset designed to train and benchmark job-skill demand forecasting models. Based on millions of public job advertisements collected from online recruitment platforms, this dataset encompasses monthly recruitment demand. Our dataset uniquely enables evaluating skill demand forecasting models at various granularities, including occupation, company, and regional levels. We benchmark a range of models on this dataset, evaluating their performance in standard scenarios, in predictions focused on lower value ranges, and in the presence of structural breaks, providing new insights for further research.


A Novel Hybrid Approach to Contraceptive Demand Forecasting: Integrating Point Predictions with Probabilistic Distributions

arXiv.org Artificial Intelligence

Accurate demand forecasting is vital for ensuring reliable access to contraceptive products, supporting key processes like procurement, inventory, and distribution. However, forecasting contraceptive demand in developing countries presents challenges, including incomplete data, poor data quality, and the need to account for multiple geographical and product factors. Current methods often rely on simple forecasting techniques, which fail to capture demand uncertainties arising from these factors, warranting expert involvement. Our study aims to improve contraceptive demand forecasting by combining probabilistic forecasting methods with expert knowledge. We developed a hybrid model that combines point forecasts from domain-specific model with probabilistic distributions from statistical and machine learning approaches, enabling human input to fine-tune and enhance the system-generated forecasts. This approach helps address the uncertainties in demand and is particularly useful in resource-limited settings. We evaluate different forecasting methods, including time series, Bayesian, machine learning, and foundational time series methods alongside our new hybrid approach. By comparing these methods, we provide insights into their strengths, weaknesses, and computational requirements. Our research fills a gap in forecasting contraceptive demand and offers a practical framework that combines algorithmic and human expertise. Our proposed model can also be generalized to other humanitarian contexts with similar data patterns.


Advancing Heat Demand Forecasting with Attention Mechanisms: Opportunities and Challenges

arXiv.org Artificial Intelligence

Global leaders and policymakers are unified in their unequivocal commitment to decarbonization efforts in support of Net-Zero agreements. District Heating Systems (DHS), while contributing to carbon emissions due to the continued reliance on fossil fuels for heat production, are embracing more sustainable practices albeit with some sense of vulnerability as it could constrain their ability to adapt to dynamic demand and production scenarios. As demographic demands grow and renewables become the central strategy in decarbonizing the heating sector, the need for accurate demand forecasting has intensified. Advances in digitization have paved the way for Machine Learning (ML) based solutions to become the industry standard for modeling complex time series patterns. In this paper, we focus on building a Deep Learning (DL) model that uses deconstructed components of independent and dependent variables that affect heat demand as features to perform multi-step ahead forecasting of head demand. The model represents the input features in a time-frequency space and uses an attention mechanism to generate accurate forecasts. The proposed method is evaluated on a real-world dataset and the forecasting performance is assessed against LSTM and CNN-based forecasting models. Across different supply zones, the attention-based models outperforms the baselines quantitatively and qualitatively, with an Mean Absolute Error (MAE) of 0.105 with a standard deviation of 0.06kW h and a Mean Absolute Percentage Error (MAPE) of 5.4% with a standard deviation of 2.8%, in comparison the second best model with a MAE of 0.10 with a standard deviation of 0.06kW h and a MAPE of 5.6% with a standard deviation of 3%.


A Comprehensive Forecasting Framework based on Multi-Stage Hierarchical Forecasting Reconciliation and Adjustment

arXiv.org Artificial Intelligence

Ads demand forecasting for Walmart's ad products plays a critical role in enabling effective resource planning, allocation, and management of ads performance. In this paper, we introduce a comprehensive demand forecasting system that tackles hierarchical time series forecasting in business settings. Though traditional hierarchical reconciliation methods ensure forecasting coherence, they often trade off accuracy for coherence especially at lower levels and fail to capture the seasonality unique to each time-series in the hierarchy. Thus, we propose a novel framework "Multi-Stage Hierarchical Forecasting Reconciliation and Adjustment (Multi-Stage HiFoReAd)" to address the challenges of preserving seasonality, ensuring coherence, and improving accuracy. Our system first utilizes diverse models, ensembled through Bayesian Optimization (BO), achieving base forecasts. The generated base forecasts are then passed into the Multi-Stage HiFoReAd framework. The initial stage refines the hierarchy using Top-Down forecasts and "harmonic alignment." The second stage aligns the higher levels' forecasts using MinTrace algorithm, following which the last two levels undergo "harmonic alignment" and "stratified scaling", to eventually achieve accurate and coherent forecasts across the whole hierarchy. Our experiments on Walmart's internal Ads-demand dataset and 3 other public datasets, each with 4 hierarchical levels, demonstrate that the average Absolute Percentage Error from the cross-validation sets improve from 3% to 40% across levels against BO-ensemble of models (LGBM, MSTL+ETS, Prophet) as well as from 1.2% to 92.9% against State-Of-The-Art models. In addition, the forecasts at all hierarchical levels are proved to be coherent. The proposed framework has been deployed and leveraged by Walmart's ads, sales and operations teams to track future demands, make informed decisions and plan resources.



Towards Universal Large-Scale Foundational Model for Natural Gas Demand Forecasting

arXiv.org Artificial Intelligence

In the context of global energy strategy, accurate natural gas demand forecasting is crucial for ensuring efficient resource allocation and operational planning. Traditional forecasting methods struggle to cope with the growing complexity and variability of gas consumption patterns across diverse industries and commercial sectors. To address these challenges, we propose the first foundation model specifically tailored for natural gas demand forecasting. Foundation models, known for their ability to generalize across tasks and datasets, offer a robust solution to the limitations of traditional methods, such as the need for separate models for different customer segments and their limited generalization capabilities. Our approach leverages contrastive learning to improve prediction accuracy in real-world scenarios, particularly by tackling issues such as noise in historical consumption data and the potential misclassification of similar data samples, which can lead to degradation in the quaility of the representation and thus the accuracy of downstream forecasting tasks. By integrating advanced noise filtering techniques within the contrastive learning framework, our model enhances the quality of learned representations, leading to more accurate predictions. Furthermore, the model undergoes industry-specific fine-tuning during pretraining, enabling it to better capture the unique characteristics of gas consumption across various sectors. We conducted extensive experiments using a large-scale dataset from ENN Group, which includes data from over 10,000 industrial, commercial, and welfare-related customers across multiple regions. Our model outperformed existing state-of-the-art methods, demonstrating a relative improvement in MSE by 3.68\% and in MASE by 6.15\% compared to the best available model.


Job-SDF: A Multi-Granularity Dataset for Job Skill Demand Forecasting and Benchmarking

arXiv.org Artificial Intelligence

In a rapidly evolving job market, skill demand forecasting is crucial as it enables policymakers and businesses to anticipate and adapt to changes, ensuring that workforce skills align with market needs, thereby enhancing productivity and competitiveness. Additionally, by identifying emerging skill requirements, it directs individuals towards relevant training and education opportunities, promoting continuous self-learning and development. However, the absence of comprehensive datasets presents a significant challenge, impeding research and the advancement of this field. To bridge this gap, we present Job-SDF, a dataset designed to train and benchmark job-skill demand forecasting models. Based on 10.35 million public job advertisements collected from major online recruitment platforms in China between 2021 and 2023, this dataset encompasses monthly recruitment demand for 2,324 types of skills across 521 companies. Our dataset uniquely enables evaluating skill demand forecasting models at various granularities, including occupation, company, and regional levels. We benchmark a range of models on this dataset, evaluating their performance in standard scenarios, in predictions focused on lower value ranges, and in the presence of structural breaks, providing new insights for further research.


A Scalable and Transferable Time Series Prediction Framework for Demand Forecasting

arXiv.org Artificial Intelligence

Time series forecasting is one of the most essential and ubiquitous tasks in many business problems, including demand forecasting and logistics optimization. Traditional time series forecasting methods, however, have resulted in small models with limited expressive power because they have difficulty in scaling their model size up while maintaining high accuracy. In this paper, we propose Forecasting orchestra (Forchestra), a simple but powerful framework capable of accurately predicting future demand for a diverse range of items. We empirically demonstrate that the model size is scalable to up to 0.8 billion parameters. The proposed method not only outperforms existing forecasting models with a significant margin, but it could generalize well to unseen data points when evaluated in a zero-shot fashion on downstream datasets. Last but not least, we present extensive qualitative and quantitative studies to analyze how the proposed model outperforms baseline models and differs from conventional approaches. The original paper was presented as a full paper at ICDM 2022 and is available at: https://ieeexplore.ieee.org/document/10027662.


Probabilistic Demand Forecasting with Graph Neural Networks

arXiv.org Artificial Intelligence

Demand forecasting is a prominent business use case that allows retailers to optimize inventory planning, logistics, and core business decisions. One of the key challenges in demand forecasting is accounting for relationships and interactions between articles. Most modern forecasting approaches provide independent article-level predictions that do not consider the impact of related articles. Recent research has attempted addressing this challenge using Graph Neural Networks (GNNs) and showed promising results. This paper builds on previous research on GNNs and makes two contributions. First, we integrate a GNN encoder into a state-of-the-art DeepAR model. The combined model produces probabilistic forecasts, which are crucial for decision-making under uncertainty. Second, we propose to build graphs using article attribute similarity, which avoids reliance on a pre-defined graph structure. Experiments on three real-world datasets show that the proposed approach consistently outperforms non-graph benchmarks. We also show that our approach produces article embeddings that encode article similarity and demand dynamics and are useful for other downstream business tasks beyond forecasting.