Goto

Collaborating Authors

 Poker


Equilibrium Refinement for the Age of Machines: The One-Sided Quasi-Perfect Equilibrium

Neural Information Processing Systems

In two-player zero-sum extensive-form games, Nash equilibrium prescribes optimal strategies against perfectly rational opponents. However, it does not guarantee rational play in parts of the game tree that can only be reached by the players making mistakes. This can be problematic when operationalizing equilibria in the real world among imperfect players. Trembling-hand refinements are a sound remedy to this issue, and are subsets of Nash equilibria that are designed to handle the possibility that any of the players may make mistakes. In this paper, we initiate the study of equilibrium refinements for settings where one of the players is perfectly rational (the "machine") and the other may make mistakes.


Equilibrium Refinement for the Age of Machines: The One-Sided Quasi-Perfect Equilibrium

Neural Information Processing Systems

In two-player zero-sum extensive-form games, Nash equilibrium prescribes optimal strategies against perfectly rational opponents. However, it does not guarantee rational play in parts of the game tree that can only be reached by the players making mistakes. This can be problematic when operationalizing equilibria in the real world among imperfect players. Trembling-hand refinements are a sound remedy to this issue, and are subsets of Nash equilibria that are designed to handle the possibility that any of the players may make mistakes. In this paper, we initiate the study of equilibrium refinements for settings where one of the players is perfectly rational (the "machine") and the other may make mistakes.


Learning to Correlate in Multi-Player General-Sum Sequential Games

Neural Information Processing Systems

In the context of multi-player, general-sum games, there is a growing interest in solution concepts involving some form of communication among players, since they can lead to socially better outcomes with respect to Nash equilibria and may be reached through learning dynamics in a decentralized fashion. In this paper, we focus on coarse correlated equilibria (CCEs) in sequential games. First, we complete the picture on the complexity of finding social-welfare-maximizing CCEs by proving that the problem is not in Poly-APX, unless P = NP, in games with three or more players (including chance). Then, we provide simple arguments showing that CFR--working with behavioral strategies--may not converge to a CCE in multi-player, general-sum sequential games. In order to amend this issue, we devise two variants of CFR that provably converge to a CCE. The first one (CFR-S) is a simple stochastic adaptation of CFR which employs sampling to build a correlated strategy, whereas the second variant (called CFR-Jr) enhances CFR with a more involved reconstruction procedure to recover correlated strategies from behavioral ones. Experiments on a rich testbed of multi-player, general-sum sequential games show that both CFR-S and CFR-Jr are dramatically faster than the state-of-the-art algorithms to compute CCEs, with CFR-Jr being also a good heuristic to find socially-optimal CCEs.


Reviews: A Unified Framework for Extensive-Form Game Abstraction with Bounds

Neural Information Processing Systems

This paper advances a line of work exploring how to approximate the Nash equilibrium of a game that's too large to compute directly. The idea is to create a smaller abstraction of the game by combining information sets, solve for equilibrium in the smaller game, then map the solution back to the original game. The topic relates to NIPS since this is a state-of-the-art method to program game-playing AI agents like poker bots. The authors prove new bounds on the error of the approximation that are very general. The authors provide the first general proof that an e'-Nash equilibrium in an abstraction leads to an e-Nash equilibrium in the original game.


Depth-Limited Solving for Imperfect-Information Games

Neural Information Processing Systems

A fundamental challenge in imperfect-information games is that states do not have well-defined values. As a result, depth-limited search algorithms used in singleagent settings and perfect-information games do not apply. This paper introduces a principled way to conduct depth-limited solving in imperfect-information games by allowing the opponent to choose among a number of strategies for the remainder of the game at the depth limit.






Learning to Correlate in Multi-Player General-Sum Sequential Games

Neural Information Processing Systems

In the context of multi-player, general-sum games, there is a growing interest in solution concepts involving some form of communication among players, since they can lead to socially better outcomes with respect to Nash equilibria and may be reached through learning dynamics in a decentralized fashion. In this paper, we focus on coarse correlated equilibria (CCEs) in sequential games. First, we complete the picture on the complexity of finding social-welfare-maximizing CCEs by proving that the problem is not in Poly-APX, unless P = NP, in games with three or more players (including chance). Then, we provide simple arguments showing that CFR--working with behavioral strategies--may not converge to a CCE in multi-player, general-sum sequential games. In order to amend this issue, we devise two variants of CFR that provably converge to a CCE. The first one (CFR-S) is a simple stochastic adaptation of CFR which employs sampling to build a correlated strategy, whereas the second variant (called CFR-Jr) enhances CFR with a more involved reconstruction procedure to recover correlated strategies from behavioral ones. Experiments on a rich testbed of multi-player, general-sum sequential games show that both CFR-S and CFR-Jr are dramatically faster than the state-of-the-art algorithms to compute CCEs, with CFR-Jr being also a good heuristic to find socially-optimal CCEs.