Goto

Collaborating Authors

 Simulation of Human Behavior


Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions

arXiv.org Artificial Intelligence

Recent advancements in general-purpose AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment. However, the lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment. In particular, ML- and philosophy-oriented alignment research often views AI alignment as a static, unidirectional process (i.e., aiming to ensure that AI systems' objectives match humans) rather than an ongoing, mutual alignment problem [429]. This perspective largely neglects the long-term interaction and dynamic changes of alignment. To understand these gaps, we introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML), and others. We characterize, define and scope human-AI alignment. From this, we present a conceptual framework of "Bidirectional Human-AI Alignment" to organize the literature from a human-centered perspective. This framework encompasses both 1) conventional studies of aligning AI to humans that ensures AI produces the intended outcomes determined by humans, and 2) a proposed concept of aligning humans to AI, which aims to help individuals and society adjust to AI advancements both cognitively and behaviorally. Additionally, we articulate the key findings derived from literature analysis, including discussions about human values, interaction techniques, and evaluations. To pave the way for future studies, we envision three key challenges for future directions and propose examples of potential future solutions.


American Sign Language Handshapes Reflect Pressures for Communicative Efficiency

arXiv.org Artificial Intelligence

Communicative efficiency is a key topic in linguistics and cognitive psychology, with many studies demonstrating how the pressure to communicate with minimal effort guides the form of natural language. However, this phenomenon is rarely explored in signed languages. This paper shows how handshapes in American Sign Language (ASL) reflect these efficiency pressures and provides new evidence of communicative efficiency in the visual-gestural modality. We focus on hand configurations in native ASL signs and signs borrowed from English to compare efficiency pressures from both ASL and English usage. First, we develop new methodologies to quantify the articulatory effort needed to produce handshapes and the perceptual effort required to recognize them. Then, we analyze correlations between communicative effort and usage statistics in ASL or English. Our findings reveal that frequent ASL handshapes are easier to produce and that pressures for communicative efficiency mostly come from ASL usage, rather than from English lexical borrowing.


Does Dependency Locality Predict Non-canonical Word Order in Hindi?

arXiv.org Artificial Intelligence

Previous work has shown that isolated non-canonical sentences with Object-before-Subject (OSV) order are initially harder to process than their canonical counterparts with Subject-before-Object (SOV) order. Although this difficulty diminishes with appropriate discourse context, the underlying cognitive factors responsible for alleviating processing challenges in OSV sentences remain a question. In this work, we test the hypothesis that dependency length minimization is a significant predictor of non-canonical (OSV) syntactic choices, especially when controlling for information status such as givenness and surprisal measures. We extract sentences from the Hindi-Urdu Treebank corpus (HUTB) that contain clearly-defined subjects and objects, systematically permute the preverbal constituents of those sentences, and deploy a classifier to distinguish between original corpus sentences and artificially generated alternatives. The classifier leverages various discourse-based and cognitive features, including dependency length, surprisal, and information status, to inform its predictions. Our results suggest that, although there exists a preference for minimizing dependency length in non-canonical corpus sentences amidst the generated variants, this factor does not significantly contribute in identifying corpus sentences above and beyond surprisal and givenness measures. Notably, discourse predictability emerges as the primary determinant of constituent-order preferences. These findings are further supported by human evaluations involving 44 native Hindi speakers. Overall, this work sheds light on the role of expectation adaptation in word-ordering decisions. We conclude by situating our results within the theories of discourse production and information locality.


Harmonizing Program Induction with Rate-Distortion Theory

arXiv.org Machine Learning

Many aspects of human learning have been proposed as a process of constructing mental programs: from acquiring symbolic number representations to intuitive theories about the world. In parallel, there is a long-tradition of using information processing to model human cognition through Rate Distortion Theory (RDT). Yet, it is still poorly understood how to apply RDT when mental representations take the form of programs. In this work, we adapt RDT by proposing a three way trade-off among rate (description length), distortion (error), and computational costs (search budget). We use simulations on a melody task to study the implications of this trade-off, and show that constructing a shared program library across tasks provides global benefits. However, this comes at the cost of sensitivity to curricula, which is also characteristic of human learners. Finally, we use methods from partial information decomposition to generate training curricula that induce more effective libraries and better generalization.


A survey to measure cognitive biases influencing mobility choices

arXiv.org Artificial Intelligence

Mobility is a central issue in the transition to a more sustainable lifestyle. The average daily distance traveled by the French population has increased considerably, from 5 km on average in the 1950s to 45 km on average in 2011 [58], as has the number of personal cars (11,860 million cars in 1970 [7] compared to 38,3 million in 2021 [15, 28]). For example in Toulouse, cars concentrate 74% of the distances traveled by the inhabitants and contribute up to 88% to GHG emissions [25]. The evolution of mobility is therefore an essential question, both for the global climate crisis and for public health: negative impact of a sedentary lifestyle [9], road accidents, air and sound pollution [44]. Indeed, 40000 deaths per year are attributable to exposure to fine particles (PM2.5) and 7000 deaths per year attributable to exposure to nitrogen dioxide (NO2), i.e. 7% and 1% of the total annual mortality [38]; the 2-month lockdown of spring 2020 in France saved 2300 deaths by reducing exposure to particles, and 1200 more deaths by reducing exposure to nitrogen dioxide [38].


Blind Spots and Biases: Exploring the Role of Annotator Cognitive Biases in NLP

arXiv.org Artificial Intelligence

With the rapid proliferation of artificial intelligence, there is growing concern over its potential to exacerbate existing biases and societal disparities and introduce novel ones. This issue has prompted widespread attention from academia, policymakers, industry, and civil society. While evidence suggests that integrating human perspectives can mitigate bias-related issues in AI systems, it also introduces challenges associated with cognitive biases inherent in human decision-making. Our research focuses on reviewing existing methodologies and ongoing investigations aimed at understanding annotation attributes that contribute to bias.


Multi-scale Hyper-time Hardware Emulation of Human Motor Nervous System Based on Spiking Neurons using FPGA

Neural Information Processing Systems

Our central goal is to quantify the long-term progression of pediatric neurological diseases, such as a typical 10-15 years progression of child dystonia. To this purpose, quantitative models are convincing only if they can provide multi-scale details ranging from neuron spikes to limb biomechanics. The models also need to be evaluated in hyper-time, i.e. significantly faster than real-time, for producing useful predictions. We designed a platform with digital VLSI hardware for multiscale hyper-time emulations of human motor nervous systems. The platform is constructed on a scalable, distributed array of Field Programmable Gate Array (FPGA) devices.


A Framework for Effective AI Recommendations in Cyber-Physical-Human Systems

arXiv.org Artificial Intelligence

Many cyber-physical-human systems (CPHS) involve a human decision-maker who may receive recommendations from an artificial intelligence (AI) platform while holding the ultimate responsibility of making decisions. In such CPHS applications, the human decision-maker may depart from an optimal recommended decision and instead implement a different one for various reasons. In this letter, we develop a rigorous framework to overcome this challenge. In our framework, we consider that humans may deviate from AI recommendations as they perceive and interpret the system's state in a different way than the AI platform. We establish the structural properties of optimal recommendation strategies and develop an approximate human model (AHM) used by the AI. We provide theoretical bounds on the optimality gap that arises from an AHM and illustrate the efficacy of our results in a numerical example.


CyberDemo: Augmenting Simulated Human Demonstration for Real-World Dexterous Manipulation

arXiv.org Artificial Intelligence

We introduce CyberDemo, a novel approach to robotic imitation learning that leverages simulated human demonstrations for real-world tasks. By incorporating extensive data augmentation in a simulated environment, CyberDemo outperforms traditional in-domain real-world demonstrations when transferred to the real world, handling diverse physical and visual conditions. Regardless of its affordability and convenience in data collection, CyberDemo outperforms baseline methods in terms of success rates across various tasks and exhibits generalizability with previously unseen objects. For example, it can rotate novel tetra-valve and penta-valve, despite human demonstrations only involving tri-valves. Our research demonstrates the significant potential of simulated human demonstrations for real-world dexterous manipulation tasks. More details can be found at https://cyber-demo.github.io


A Multi-Agent Model for Opinion Evolution under Cognitive Biases

arXiv.org Artificial Intelligence

We generalize the DeGroot model for opinion dynamics to better capture realistic social scenarios. We introduce a model where each agent has their own individual cognitive biases. Society is represented as a directed graph whose edges indicate how much agents influence one another. Biases are represented as the functions in the square region $[-1,1]^2$ and categorized into four sub-regions based on the potential reactions they may elicit in an agent during instances of opinion disagreement. Under the assumption that each bias of every agent is a continuous function within the region of receptive but resistant reactions ($\mathbf{R}$), we show that the society converges to a consensus if the graph is strongly connected. Under the same assumption, we also establish that the entire society converges to a unanimous opinion if and only if the source components of the graph-namely, strongly connected components with no external influence-converge to that opinion. We illustrate that convergence is not guaranteed for strongly connected graphs when biases are either discontinuous functions in $\mathbf{R}$ or not included in $\mathbf{R}$. We showcase our model through a series of examples and simulations, offering insights into how opinions form in social networks under cognitive biases.