Goto

Collaborating Authors

 Emotion


What your use of emojis says about your emotional intelligence

Daily Mail - Science & tech

Emojis are a whimsical way to communicate, allowing users to send a smiling face, avocado and even an eggplant to express their feelings. But how you use the digital pictures reveals your emotional intelligence, a new study has claimed. The results revealed that individuals with higher emotional intelligence and secure attachment may send emojis more frequently. That is because texters used them reduce uncertainty in what their messages were conveying, thus recognizing how the recipient may interpret the communication. This was more common among women who tend to express themselves on a more intimate level.


Incomplete Multimodality-Diffused Emotion Recognition

Neural Information Processing Systems

Human multimodal emotion recognition (MER) aims to perceive and understand human emotions via various heterogeneous modalities, such as language, vision, and acoustic. Compared with unimodality, the complementary information in the multimodalities facilitates robust emotion understanding. Nevertheless, in real-world scenarios, the missing modalities hinder multimodal understanding and result in degraded MER performance. In this paper, we propose an Incomplete Multimodality-Diffused emotion recognition (IMDer) method to mitigate the challenge of MER under incomplete multimodalities. To recover the missing modalities, IMDer exploits the score-based diffusion model that maps the input Gaussian noise into the desired distribution space of the missing modalities and recovers missing data abided by their original distributions.


Incomplete Multimodality-Diffused Emotion Recognition

Neural Information Processing Systems

Human multimodal emotion recognition (MER) aims to perceive and understand human emotions via various heterogeneous modalities, such as language, vision, and acoustic. Compared with unimodality, the complementary information in the multimodalities facilitates robust emotion understanding. Nevertheless, in real-world scenarios, the missing modalities hinder multimodal understanding and result in degraded MER performance. In this paper, we propose an Incomplete Multimodality-Diffused emotion recognition (IMDer) method to mitigate the challenge of MER under incomplete multimodalities. To recover the missing modalities, IMDer exploits the score-based diffusion model that maps the input Gaussian noise into the desired distribution space of the missing modalities and recovers missing data abided by their original distributions.


Fusion in Context: A Multimodal Approach to Affective State Recognition

arXiv.org Artificial Intelligence

Accurate recognition of human emotions is a crucial challenge in affective computing and human-robot interaction (HRI). Emotional states play a vital role in shaping behaviors, decisions, and social interactions. However, emotional expressions can be influenced by contextual factors, leading to misinterpretations if context is not considered. Multimodal fusion, combining modalities like facial expressions, speech, and physiological signals, has shown promise in improving affect recognition. This paper proposes a transformer-based multimodal fusion approach that leverages facial thermal data, facial action units, and textual context information for context-aware emotion recognition. We explore modality-specific encoders to learn tailored representations, which are then fused using additive fusion and processed by a shared transformer encoder to capture temporal dependencies and interactions. The proposed method is evaluated on a dataset collected from participants engaged in a tangible tabletop Pacman game designed to induce various affective states. Our results demonstrate the effectiveness of incorporating contextual information and multimodal fusion for affective state recognition.


Human-like Affective Cognition in Foundation Models

arXiv.org Artificial Intelligence

Understanding emotions is fundamental to human interaction and experience. Humans easily infer emotions from situations or facial expressions, situations from emotions, and do a variety of other affective cognition. How adept is modern AI at these inferences? We introduce an evaluation framework for testing affective cognition in foundation models. Starting from psychological theory, we generate 1,280 diverse scenarios exploring relationships between appraisals, emotions, expressions, and outcomes. We evaluate the abilities of foundation models (GPT-4, Claude-3, Gemini-1.5-Pro) and humans (N = 567) across carefully selected conditions. Our results show foundation models tend to agree with human intuitions, matching or exceeding interparticipant agreement. In some conditions, models are ``superhuman'' -- they better predict modal human judgements than the average human. All models benefit from chain-of-thought reasoning. This suggests foundation models have acquired a human-like understanding of emotions and their influence on beliefs and behavior.


Improving Speech Emotion Recognition in Under-Resourced Languages via Speech-to-Speech Translation with Bootstrapping Data Selection

arXiv.org Artificial Intelligence

Speech Emotion Recognition (SER) is a crucial component in developing general-purpose AI agents capable of natural human-computer interaction. However, building robust multilingual SER systems remains challenging due to the scarcity of labeled data in languages other than English and Chinese. In this paper, we propose an approach to enhance SER performance in low SER resource languages by leveraging data from high-resource languages. Specifically, we employ expressive Speech-to-Speech translation (S2ST) combined with a novel bootstrapping data selection pipeline to generate labeled data in the target language. Extensive experiments demonstrate that our method is both effective and generalizable across different upstream models and languages. Our results suggest that this approach can facilitate the development of more scalable and robust multilingual SER systems.


A HeARTfelt Robot: Social Robot-Driven Deep Emotional Art Reflection with Children

arXiv.org Artificial Intelligence

Social-emotional learning (SEL) skills are essential for children to develop to provide a foundation for future relational and academic success. Using art as a medium for creation or as a topic to provoke conversation is a well-known method of SEL learning. Similarly, social robots have been used to teach SEL competencies like empathy, but the combination of art and social robotics has been minimally explored. In this paper, we present a novel child-robot interaction designed to foster empathy and promote SEL competencies via a conversation about art scaffolded by a social robot. Participants (N=11, age range: 7-11) conversed with a social robot about emotional and neutral art. Analysis of video and speech data demonstrated that this interaction design successfully engaged children in the practice of SEL skills, like emotion recognition and self-awareness, and greater rates of empathetic reasoning were observed when children engaged with the robot about emotional art. This study demonstrated that art-based reflection with a social robot, particularly on emotional art, can foster empathy in children, and interactions with a social robot help alleviate discomfort when sharing deep or vulnerable emotions.


Personalized Speech Emotion Recognition in Human-Robot Interaction using Vision Transformers

arXiv.org Artificial Intelligence

Emotions are an essential element in verbal communication, so understanding individuals' affect during a human-robot interaction (HRI) becomes imperative. This paper investigates the application of vision transformer models, namely ViT (Vision Transformers) and BEiT (BERT Pre-Training of Image Transformers) pipelines, for Speech Emotion Recognition (SER) in HRI. The focus is to generalize the SER models for individual speech characteristics by fine-tuning these models on benchmark datasets and exploiting ensemble methods. For this purpose, we collected audio data from different human subjects having pseudo-naturalistic conversations with the NAO robot. We then fine-tuned our ViT and BEiT-based models and tested these models on unseen speech samples from the participants. In the results, we show that fine-tuning vision transformers on benchmark datasets and and then using either these already fine-tuned models or ensembling ViT/BEiT models gets us the highest classification accuracies per individual when it comes to identifying four primary emotions from their speech: neutral, happy, sad, and angry, as compared to fine-tuning vanilla-ViTs or BEiTs.


A Survey of Foundation Models for Music Understanding

arXiv.org Artificial Intelligence

Music is essential in daily life, fulfilling emotional and entertainment needs, and connecting us personally, socially, and culturally. A better understanding of music can enhance our emotions, cognitive skills, and cultural connections. The rapid advancement of artificial intelligence (AI) has introduced new ways to analyze music, aiming to replicate human understanding of music and provide related services. While the traditional models focused on audio features and simple tasks, the recent development of large language models (LLMs) and foundation models (FMs), which excel in various fields by integrating semantic information and demonstrating strong reasoning abilities, could capture complex musical features and patterns, integrate music with language and incorporate rich musical, emotional and psychological knowledge. Therefore, they have the potential in handling complex music understanding tasks from a semantic perspective, producing outputs closer to human perception. This work, to our best knowledge, is one of the early reviews of the intersection of AI techniques and music understanding. We investigated, analyzed, and tested recent large-scale music foundation models in respect of their music comprehension abilities. We also discussed their limitations and proposed possible future directions, offering insights for researchers in this field.


Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features

arXiv.org Artificial Intelligence

Pre-trained deep learning embeddings have consistently shown superior performance over handcrafted acoustic features in speech emotion recognition (SER). However, unlike acoustic features with clear physical meaning, these embeddings lack clear interpretability. Explaining these embeddings is crucial for building trust in healthcare and security applications and advancing the scientific understanding of the acoustic information that is encoded in them. This paper proposes a modified probing approach to explain deep learning embeddings in the SER space. We predict interpretable acoustic features (e.g., f0, loudness) from (i) the complete set of embeddings and (ii) a subset of the embedding dimensions identified as most important for predicting each emotion. If the subset of the most important dimensions better predicts a given emotion than all dimensions and also predicts specific acoustic features more accurately, we infer those acoustic features are important for the embedding model for the given task. We conducted experiments using the WavLM embeddings and eGeMAPS acoustic features as audio representations, applying our method to the RAVDESS and SAVEE emotional speech datasets. Based on this evaluation, we demonstrate that Energy, Frequency, Spectral, and Temporal categories of acoustic features provide diminishing information to SER in that order, demonstrating the utility of the probing classifier method to relate embeddings to interpretable acoustic features.