Emotion
To Err Like Human: Affective Bias-Inspired Measures for Visual Emotion Recognition Evaluation Jufeng Yang
Accuracy is a commonly adopted performance metric in various classification tasks, which measures the proportion of correctly classified samples among all samples. It assumes equal importance for all classes, hence equal severity for misclassifications. However, in the task of emotional classification, due to the psychological similarities between emotions, misclassifying a certain emotion into one class may be more severe than another, e.g., misclassifying'excitement' as'anger' apparently is more severe than as'awe'. Albeit high meaningful for many applications, metrics capable of measuring these cases of misclassifications in visual emotion recognition tasks have yet to be explored. In this paper, based on Mikel's emotion wheel from psychology, we propose a novel approach for evaluating the performance in visual emotion recognition, which takes into account the distance on the emotion wheel between different emotions to mimic the psychological nuances of emotions. Experimental results in semi-supervised learning on emotion recognition and user study have shown that our proposed metrics is more effective than the accuracy to assess the performance and conforms to the cognitive laws of human emotions.
EEVR: A Dataset of Paired Physiological Signals and Textual Descriptions for Joint Emotion Representation Learning
EEVR (Emotion Elicitation in Virtual Reality) is a novel dataset specifically designed for language supervision-based pre-training of emotion recognition tasks, such as valence and arousal classification. It features high-quality physiological signals, including electrodermal activity (EDA) and photoplethysmography (PPG), acquired through emotion elicitation via 360-degree virtual reality (VR) videos. Additionally, it includes subject-wise textual descriptions of emotions experienced during each stimulus gathered from qualitative interviews. The dataset consists of recordings from 37 participants and is the first dataset to pair raw text with physiological signals, providing additional contextual information that objective labels cannot offer. To leverage this dataset, we introduced the Contrastive Language Signal Pre-training (CLSP) method, which jointly learns representations using pairs of physiological signals and textual descriptions. Our results show that integrating self-reported textual descriptions with physiological signals significantly improves performance on emotion recognition tasks, such as arousal and valence classification. Moreover, our pre-trained CLSP model demonstrates strong zero-shot transferability to existing datasets, outperforming supervised baseline models, suggesting that the representations learned by our method are more contextualized and generalized. The dataset also includes baseline models for arousal, valence, and emotion classification, as well as code for data cleaning and feature extraction.
FindingEmo: An Image Dataset for Emotion Recognition in the Wild Laurent Mertens 1,2 Hans Op de Beeck 3 Jan Van den Stock
We introduce FindingEmo, a new image dataset containing annotations for 25k images, specifically tailored to Emotion Recognition. Contrary to existing datasets, it focuses on complex scenes depicting multiple people in various naturalistic, social settings, with images being annotated as a whole, thereby going beyond the traditional focus on faces or single individuals. Annotated dimensions include Valence, Arousal and Emotion label, with annotations gathered using Prolific. Together with the annotations, we release the list of URLs pointing to the original images, as well as all associated source code.
To Err Like Human: Affective Bias-Inspired Measures for Visual Emotion Recognition Evaluation
Accuracy is a commonly adopted performance metric in various classification tasks, which measures the proportion of correctly classified samples among all samples. It assumes equal importance for all classes, hence equal severity for misclassifications. However, in the task of emotional classification, due to the psychological similarities between emotions, misclassifying a certain emotion into one class may be more severe than another, e.g., misclassifying'excitement' as'anger' apparently is more severe than as'awe'. Albeit high meaningful for many applications, metrics capable of measuring these cases of misclassifications in visual emotion recognition tasks have yet to be explored. In this paper, based on Mikel's emotion wheel from psychology, we propose a novel approach for evaluating the performance in visual emotion recognition, which takes into account the distance on the emotion wheel between different emotions to mimic the psychological nuances of emotions. Experimental results in semi-supervised learning on emotion recognition and user study have shown that our proposed metrics is more effective than the accuracy to assess the performance and conforms to the cognitive laws of human emotions.
E 3 : Exploring Embodied Emotion Through A Large-Scale Egocentric Video Dataset
Understanding human emotions is fundamental to enhancing human-computer interaction, especially for embodied agents that mimic human behavior. Traditional emotion analysis often takes a third-person perspective, limiting the ability of agents to interact naturally and empathetically. To address this gap, this paper presents E 3 for Exploring Embodied Emotion, the first massive first-person view video dataset. E 3 contains more than 50 hours of video, capturing 8 different emotion types in diverse scenarios and languages. The dataset features videos recorded by individuals in their daily lives, capturing a wide range of real-world emotions conveyed through visual, acoustic, and textual modalities.