Cognitive Architectures
Metacognition in Content-Centric Computational Cognitive C4 Modeling
Nirenburg, Sergei, McShane, Marjorie, Oruganti, Sanjay
For AI agents to emulate human behavior, they must be able to perceive, meaningfully interpret, store, and use large amounts of information about the world, themselves, and other agents. Metacognition is a necessary component of all of these processes. In this paper, we briefly a) introduce content-centric computational cognitive (C4) modeling for next-generation AI agents; b) review the long history of developing C4 agents at RPI's LEIA (Language-Endowed Intelligent Agents) Lab; c) discuss our current work on extending LEIAs' cognitive capabilities to cognitive robotic applications developed using a neuro symbolic processing model; and d) sketch plans for future developments in this paradigm that aim to overcome underappreciated limitations of currently popular, LLM-driven methods in AI.
Probabilistic Foundations for Metacognition via Hybrid-AI
Shakarian, Paulo, Simari, Gerardo I., Bastian, Nathaniel D.
Metacognition is the concept of reasoning about an agent's own internal processes, and it has recently received renewed attention with respect to artificial intelligence (AI) and, more specifically, machine learning systems. This paper reviews a hybrid-AI approach known as "error detecting and correcting rules" (EDCR) that allows for the learning of rules to correct perceptual (e.g., neural) models. Additionally, we introduce a probabilistic framework that adds rigor to prior empirical studies, and we use this framework to prove results on necessary and sufficient conditions for metacognitive improvement, as well as limits to the approach. A set of future
Probing a Vision-Language-Action Model for Symbolic States and Integration into a Cognitive Architecture
Lu, Hong, Li, Hengxu, Shahani, Prithviraj Singh, Herbers, Stephanie, Scheutz, Matthias
Vision-language-action (VLA) models hold promise as generalist robotics solutions by translating visual and linguistic inputs into robot actions, yet they lack reliability due to their black-box nature and sensitivity to environmental changes. In contrast, cognitive architectures (CA) excel in symbolic reasoning and state monitoring but are constrained by rigid predefined execution. This work bridges these approaches by probing OpenVLA's hidden layers to uncover symbolic representations of object properties, relations, and action states, enabling integration with a CA for enhanced interpretability and robustness. Through experiments on LIBERO-spatial pick-and-place tasks, we analyze the encoding of symbolic states across different layers of OpenVLA's Llama backbone. Our probing results show consistently high accuracies (> 0.90) for both object and action states across most layers, though contrary to our hypotheses, we did not observe the expected pattern of object states being encoded earlier than action states. We demonstrate an integrated DIARC-OpenVLA system that leverages these symbolic representations for real-time state monitoring, laying the foundation for more interpretable and reliable robotic manipulation.
Building a Cognitive Twin Using a Distributed Cognitive System and an Evolution Strategy
Gibaut, Wandemberg, Gudwin, Ricardo
Approximately at the same time, based on the ideas This work proposes an approach that uses an evolutionary presented by Newell, Rosenbloom and Laird (1989), Laird algorithm along traditional Machine Learning methods released early versions of the SOAR cognitive architecture to build a digital, distributed cognitive agent capable of (Laird and Rosenbloom, 1996; Laird, 2012). By the end of emulating the potential actions (input-output behavior) of the 1990s, a large group of researchers involved in the Simulation a user while allowing further analysis and experimentation of Adaptive Behavior shaped the concept of Cognitive - at a certain level - of its internal structures. We focus Architecture as an essential set of structures and processes on the usage of simple devices and the automation of this necessary for the generation of a computational, cognitive building process, rather than manually designing the agent.
major comments below. Thanks to Reviewer # 1 and # 4 for pointing out that behavioral work in cognitive science suggests that people indeed
Thank you all for your helpful comments on our Comp Neuro paper. If the results of Figure 1 are indicative, this could further improve the results. The supervised training phase is depicted in the somewhat busy Fig. S2. While we disagree with Reviewer #2's opinion that the connection between neural regression and GPs is completely
The potential -- and the pitfalls -- of using pre-trained language models as cognitive science theories
Shah, Raj Sanjay, Varma, Sashank
Many studies have evaluated the cognitive alignment of Pre-trained Language Models (PLMs), i.e., their correspondence to adult performance across a range of cognitive domains. Recently, the focus has expanded to the developmental alignment of these models: identifying phases during training where improvements in model performance track improvements in children's thinking over development. However, there are many challenges to the use of PLMs as cognitive science theories, including different architectures, different training data modalities and scales, and limited model interpretability. In this paper, we distill lessons learned from treating PLMs, not as engineering artifacts but as cognitive science and developmental science models. We review assumptions used by researchers to map measures of PLM performance to measures of human performance. We identify potential pitfalls of this approach to understanding human thinking, and we end by enumerating criteria for using PLMs as credible accounts of cognition and cognitive development.
Sampling for Bayesian Program Learning
Kevin Ellis, Armando Solar-Lezama, Josh Tenenbaum
Towards learning programs from data, we introduce the problem of sampling programs from posterior distributions conditioned on that data. Within this setting, we propose an algorithm that uses a symbolic solver to efficiently sample programs. The proposal combines constraint-based program synthesis with sampling via random parity constraints. We give theoretical guarantees on how well the samples approximate the true posterior, and have empirical results showing the algorithm is efficient in practice, evaluating our approach on 22 program learning problems in the domains of text editing and computer-aided programming.
Human-inspired Perspectives: A Survey on AI Long-term Memory
He, Zihong, Lin, Weizhe, Zheng, Hao, Zhang, Fan, Jones, Matt W., Aitchison, Laurence, Xu, Xuhai, Liu, Miao, Kristensson, Per Ola, Shen, Junxiao
With the rapid advancement of AI systems, their abilities to store, retrieve, and utilize information over the long term - referred to as long-term memory - have become increasingly significant. These capabilities are crucial for enhancing the performance of AI systems across a wide range of tasks. However, there is currently no comprehensive survey that systematically investigates AI's long-term memory capabilities, formulates a theoretical framework, and inspires the development of next-generation AI long-term memory systems. This paper begins by introducing the mechanisms of human long-term memory, then explores AI long-term memory mechanisms, establishing a mapping between the two. Based on the mapping relationships identified, we extend the current cognitive architectures and propose the Cognitive Architecture of Self-Adaptive Long-term Memory (SALM). SALM provides a theoretical framework for the practice of AI long-term memory and holds potential for guiding the creation of next-generation long-term memory driven AI systems. Finally, we delve into the future directions and application prospects of AI long-term memory.
A Proposal for Extending the Common Model of Cognition to Emotion
Rosenbloom, Paul S., Laird, John E., Lebiere, Christian, Stocco, Andrea, Granger, Richard H., Huyck, Christian
Model and how we arrived at this proposal. The subsequent The Common Model of Cognition (Rosenbloom, Lebiere & two sections provide more details on two new modules that Laird, 2022) - née the Standard Model of the Mind (Laird, are proposed for inclusion into the Common Model - one for Lebiere & Rosenbloom, 2017) - is a developing consensus emotion and one for metacognitive assessment - and how concerning what must be in a cognitive architecture to they interact with the rest of the model.
Modeling Task Immersion based on Goal Activation Mechanism
Nagashima, Kazuma, Nishikawa, Jumpei, Morita, Junya
Immersion in a task is a prerequisite for creativity. However, excessive arousal in a single task has drawbacks, such as overlooking events outside of the task. To examine such a negative aspect, this study constructs a computational model of arousal dynamics where the excessively increased arousal makes the task transition difficult. The model was developed using functions integrated into the cognitive architecture Adaptive Control of Thought-Rational (ACT-R). Under the framework, arousal is treated as a coefficient affecting the overall activation level in the model. In our simulations, we set up two conditions demanding low and high arousal, trying to replicate corresponding human experiments. In each simulation condition, two sets of ACT-R parameters were assumed from the different interpretations of the human experimental settings. The results showed consistency of behavior between humans and models both in the two different simulation settings. This result suggests the validity of our assumptions and has implications of controlling arousal in our daily life.