Goto

Collaborating Authors

 Industry


Heuristics: Intelligent Search Strategies for Computer Problem Solving

Classics

Optical transport networks based on wavelength division multiplexing (WDM) are considered to be the most appropriate choice for future Internet backbone. On the other hand, future DOE networks are expected to have the ability to dynamically provision on-demand survivable services to suit the needs of various high performance scientific applications and remote collaboration. Since a failure in aWDMnetwork such as a cable cut may result in a tremendous amount of data loss, efficient protection of data transport in WDM networks is therefore essential. As the backbone network is moving towards GMPLS/WDM optical networks, the unique requirement to support DOE's sciencemore » mission results in challenging issues that are not directly addressed by existing networking techniques and methodologies. The objectives of this project were to develop cost effective protection and restoration mechanisms based on dedicated path, shared path, preconfigured cycle (p-cycle), and so on, to deal with single failure, dual failure, and shared risk link group (SRLG) failure, under different traffic and resource requirement models; to devise efficient service provisioning algorithms that deal with application specific network resource requirements for both unicast and multicast; to study various aspects of traffic grooming in WDM ring and mesh networks to derive cost effective solutions while meeting application resource and QoS requirements; to design various diverse routing and multi-constrained routing algorithms, considering different traffic models and failure models, for protection and restoration, as well as for service provisioning; to propose and study new optical burst switched architectures and mechanisms for effectively supporting dynamic services; and to integrate research with graduate and undergraduate education.


Perception

Classics

W. H. Freeman. See also: An Introduction to Perception. Macmillan, 1975 (http://psych.unl.edu/psycrs/350lab/lab12_exp/rock.pdf). The effect of inattention on form perception. Rock, Irvin; Gutman, Daniel. Journal of Experimental Psychology: Human Perception and Performance, Vol 7(2), Apr 1981, 275-285 (http://psycnet.apa.org/journals/xhp/7/2/275/). Irvin Rock, Joseph DiVita, A case of viewer-centered object perception, Cognitive Psychology, Volume 19, Issue 2, April 1987, Pages 280-293 (http://www.sciencedirect.com/science/article/pii/0010028587900132). Rock, Irvin. The perception of disoriented figures. Scientific American, Vol 230(1), Jan 1974, 78-85 (https://www.jstor.org/stable/pdf/24949985.pdf?seq=1#page_scan_tab_contents). Irvin Rock, Christopher M Linnett, Paul Grant, Arien Mack, Perception without attention: Results of a new method, Cognitive Psychology, Volume 24, Issue 4, October 1992, Pages 502-534 (http://www.sciencedirect.com/science/article/pii/001002859290017V). Irvin Rock (ed.). Indirect Perception. MIT Press, 1997 (https://books.google.com/books?isbn=0262181770). Arien Mack and Irvin Rock. Inattentional Blindness, MIT Press, 1998. (https://books.google.com/books?isbn=0262133393).


Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project

Classics

Artificial intelligence, or AI, is largely an experimental science—at least as much progress has been made by building and analyzing programs as by examining theoretical questions. MYCIN is one of several well-known programs that embody some intelligence and provide data on the extent to which intelligent behavior can be programmed. As with other AI programs, its development was slow and not always in a forward direction. But we feel we learned some useful lessons in the course of nearly a decade of work on MYCIN and related programs. In this book we share the results of many experiments performed in that time, and we try to paint a coherent picture of the work. The book is intended to be a critical analysis of several pieces of related research, performed by a large number of scientists. We believe that the whole field of AI will benefit from such attempts to take a detailed retrospective look at experiments, for in this way the scientific foundations of the field will gradually be defined. It is for all these reasons that we have prepared this analysis of the MYCIN experiments.

The complete book in a single file.


Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project

Classics

Artificial intelligence, or AI, is largely an experimental science—at least as much progress has been made by building and analyzing programs as by examining theoretical questions. MYCIN is one of several well-known programs that embody some intelligence and provide data on the extent to which intelligent behavior can be programmed. As with other AI programs, its development was slow and not always in a forward direction. But we feel we learned some useful lessons in the course of nearly a decade of work on MYCIN and related programs. In this book we share the results of many experiments performed in that time, and we try to paint a coherent picture of the work. The book is intended to be a critical analysis of several pieces of related research, performed by a large number of scientists. We believe that the whole field of AI will benefit from such attempts to take a detailed retrospective look at experiments, for in this way the scientific foundations of the field will gradually be defined. It is for all these reasons that we have prepared this analysis of the MYCIN experiments.ContentsContributorsForewordAllen NewellPrefacePart One: BackgroundChapter 1—The Context of the MYCIN ExperimentsChapter 2—The Origin of Rule-Based Systems in AIRandall Davis and Jonathan J. KingPart Two: Using RulesChapter 3—The Evolution of MYCIN’s Rule FormChapter 4—The Structure of the MYCIN SystemWilliam van MelleChapter 5—Details of the Consultation SystemEdward H. ShortliffeChapter 6—Details of the Revised Therapy AlgorithmWilliam J. ClanceyPart Three: Building a Knowledge BaseChapter 7—Knowledge EngineeringChapter 8—Completeness and Consistency in a Rule-Based SystemMotoi Suwa, A. Carlisle Scott, and Edward H. ShortliffeChapter 9—Interactive Transfer of ExpertiseRandall Davis[#p4]] Part Four: Reasoning Under UncertaintyChapter 10—Uncertainty and Evidential SupportChapter 11—A Model of Inexact Reasoning in MedicineEdward H. Shortliffe and Bruce G. BuchananChapter 12—Probabilistic Reasoning and Certainty FactorsJ. Barclay AdamsChapter 13—The Dempster-Shafer Theory of EvidenceJean Gordon and Edward H. ShortliffePart Five: Generalizing MYCINChapter 14—Use of the MYCIN Inference EngineChapter 15—EMYCIN: A Knowledge Engineer’s Tool for Constructing Rule-Based Expert SystemsWilliam van Melle, Edward H. Shortliffe, and Bruce G. BuchananChapter 16—Experience Using EMYCINJames S. Bennett and Robert S. EngelmorePart Six: Explaining the ReasoningChapter 17—Explanation as a Topic of AI ResearchChapter 18—Methods for Generating ExplanationsA. Carlisle Scott, William J. Clancey, Randall Davis, and Edward H. ShortliffeChapter 19—Specialized Explanations for Dosage SelectionSharon Wraith Bennett and A. Carlisle ScottChapter 20—Customized Explanations Using Causal KnowledgeJerold W. Wallis and Edward H. ShortliffePart Seven: Using Other RepresentationsChapter 21—Other Representation FrameworksChapter 22—Extensions to the Rule-Based Formalism for a Monitoring TaskLawrence M. Fagan, John C. Kunz, Edward A. Feigenbaum, and John J. OsbornChapter 23—A Representation Scheme Using Both Frames and RulesJanice S. AikinsChapter 24—Another Look at FramesDavid E. Smith and Jan E. ClaytonPart Eight: TutoringChapter 25—Intelligent Computer-Aided InstructionChapter 26—Use of MYCIN’s Rules for TutoringWilliam J. ClanceyPart Nine: Augmenting the RulesChapter 27—Additional Knowledge StructuresChapter 28—Meta-Level KnowledgeRandall Davis and Bruce G. BuchananChapter 29—Extensions to Rules for Explanation and TutoringWilliam J. ClanceyPart Ten: Evaluating PerformanceChapter 30—The Problem of EvaluationChapter 31—An Evaluation of MYCIN’s AdviceVictor L. Yu, Lawrence M. Fagan, Sharon Wraith Bennett, William J . Clancey, A. Carlisle Scott, John F. Hannigan, Robert L. Blum, Bruce G. Buchanan, and Stanley N. CohenPart Eleven: Designing for Human UseChapter 32—Human Engineering of Medical Expert SystemsChapter 33—Strategies for Understanding Structured EnglishAlain BonnetChapter 34—An Analysis of Physicians’ AttitudesRandy L. Teach and Edward H. ShortliffeChapter 35—An Expert System for Oncology Protocol ManagementEdward H. Shortliffe, A. Carlisle Scott, Miriam B. Bischoff, A. Bruce Campbell, William van MeUe, and Charlotte D. JacobsPart Twelve: ConclusionsChapter 36—Major Lessons from This WorkEpilogAppendixReferencesName IndexSubject IndexReading, MA: Addison-Wesley Publishing Co., Inc.


Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project

Classics

Artificial intelligence, or AI, is largely an experimental science—at least as much progress has been made by building and analyzing programs as by examining theoretical questions. MYCIN is one of several well-known programs that embody some intelligence and provide data on the extent to which intelligent behavior can be programmed. As with other AI programs, its development was slow and not always in a forward direction. But we feel we learned some useful lessons in the course of nearly a decade of work on MYCIN and related programs. In this book we share the results of many experiments performed in that time, and we try to paint a coherent picture of the work. The book is intended to be a critical analysis of several pieces of related research, performed by a large number of scientists. We believe that the whole field of AI will benefit from such attempts to take a detailed retrospective look at experiments, for in this way the scientific foundations of the field will gradually be defined. It is for all these reasons that we have prepared this analysis of the MYCIN experiments.ContentsContributorsForewordAllen NewellPrefacePart One: BackgroundChapter 1—The Context of the MYCIN ExperimentsChapter 2—The Origin of Rule-Based Systems in AIRandall Davis and Jonathan J. KingPart Two: Using RulesChapter 3—The Evolution of MYCIN’s Rule FormChapter 4—The Structure of the MYCIN SystemWilliam van MelleChapter 5—Details of the Consultation SystemEdward H. ShortliffeChapter 6—Details of the Revised Therapy AlgorithmWilliam J. ClanceyPart Three: Building a Knowledge BaseChapter 7—Knowledge EngineeringChapter 8—Completeness and Consistency in a Rule-Based SystemMotoi Suwa, A. Carlisle Scott, and Edward H. ShortliffeChapter 9—Interactive Transfer of ExpertiseRandall Davis[#p4]] Part Four: Reasoning Under UncertaintyChapter 10—Uncertainty and Evidential SupportChapter 11—A Model of Inexact Reasoning in MedicineEdward H. Shortliffe and Bruce G. BuchananChapter 12—Probabilistic Reasoning and Certainty FactorsJ. Barclay AdamsChapter 13—The Dempster-Shafer Theory of EvidenceJean Gordon and Edward H. ShortliffePart Five: Generalizing MYCINChapter 14—Use of the MYCIN Inference EngineChapter 15—EMYCIN: A Knowledge Engineer’s Tool for Constructing Rule-Based Expert SystemsWilliam van Melle, Edward H. Shortliffe, and Bruce G. BuchananChapter 16—Experience Using EMYCINJames S. Bennett and Robert S. EngelmorePart Six: Explaining the ReasoningChapter 17—Explanation as a Topic of AI ResearchChapter 18—Methods for Generating ExplanationsA. Carlisle Scott, William J. Clancey, Randall Davis, and Edward H. ShortliffeChapter 19—Specialized Explanations for Dosage SelectionSharon Wraith Bennett and A. Carlisle ScottChapter 20—Customized Explanations Using Causal KnowledgeJerold W. Wallis and Edward H. ShortliffePart Seven: Using Other RepresentationsChapter 21—Other Representation FrameworksChapter 22—Extensions to the Rule-Based Formalism for a Monitoring TaskLawrence M. Fagan, John C. Kunz, Edward A. Feigenbaum, and John J. OsbornChapter 23—A Representation Scheme Using Both Frames and RulesJanice S. AikinsChapter 24—Another Look at FramesDavid E. Smith and Jan E. ClaytonPart Eight: TutoringChapter 25—Intelligent Computer-Aided InstructionChapter 26—Use of MYCIN’s Rules for TutoringWilliam J. ClanceyPart Nine: Augmenting the RulesChapter 27—Additional Knowledge StructuresChapter 28—Meta-Level KnowledgeRandall Davis and Bruce G. BuchananChapter 29—Extensions to Rules for Explanation and TutoringWilliam J. ClanceyPart Ten: Evaluating PerformanceChapter 30—The Problem of EvaluationChapter 31—An Evaluation of MYCIN’s AdviceVictor L. Yu, Lawrence M. Fagan, Sharon Wraith Bennett, William J . Clancey, A. Carlisle Scott, John F. Hannigan, Robert L. Blum, Bruce G. Buchanan, and Stanley N. CohenPart Eleven: Designing for Human UseChapter 32—Human Engineering of Medical Expert SystemsChapter 33—Strategies for Understanding Structured EnglishAlain BonnetChapter 34—An Analysis of Physicians’ AttitudesRandy L. Teach and Edward H. ShortliffeChapter 35—An Expert System for Oncology Protocol ManagementEdward H. Shortliffe, A. Carlisle Scott, Miriam B. Bischoff, A. Bruce Campbell, William van MeUe, and Charlotte D. JacobsPart Twelve: ConclusionsChapter 36—Major Lessons from This WorkEpilogAppendixReferencesName IndexSubject IndexReading, MA: Addison-Wesley Publishing Co., Inc.


Readings in Medical Artificial Intelligence: The First Decade - Table of Contents

Classics

A survey of early work exploring how AI can be used in medicine, with somewhat more technical expositions than in the complementary volume "Artificial Intelligence in Medicine." Each chapter is preceded by a brief introduction that outlines our view of its contribution to the field, the reason it was selected for inclusion in this volume, an overview of its content, and a discussion of how the work evolved after the article appeared and how it relates to other chapters in the book.


What Should Artificial Intelligence Want from the Supercomputers?

AI Magazine

While some proposals for supercomputers increase the powers of existing machines like CDC and Cray supercomputers, others suggest radical changes of architecture to speed up non-traditional operations such as logical inference in PROLOG, recognition/ action in production systems, or message passing. We examine the case of parallel PROLOG to identify several related computations which subsume those of parallel PROLOG, but which have much wider interest, and which may have roughly the same difficulty of mechanization. Similar considerations apply to some other proposed architectures as well, raising the possibility that current efforts may be limiting their aims unnecessarily.


Research at Jet Propulsion Laboratory

AI Magazine

AI research at JPL started in 1972 when design and construction of experimental "Mars Rover" began. Early in that effort, it was recognized that rover planning capabilities were inadequate. Research in planning was begun in 1975, and work on a succession of AI expert systems of steadily increasing power has continued to the present. Within the group, we have concentrated our efforts on expert systems, although work on vision and robotics has continued in a separate organizations, with which we have maintained informal contacts.



Review of States of Mind

AI Magazine

The subject the idea has changed psychology, anthropology, sociology, is attempting to make sense of the world, and often coping and psychiatry should make its pervasiveness and importance with incomplete information, failure to understand, or lacking more evident.