Goto

Collaborating Authors

 Industry


Neural Network Recognizer for Hand-Written Zip Code Digits

Neural Information Processing Systems

This paper describes the construction of a system that recognizes hand-printed digits, using a combination of classical techniques and neural-net methods. The system has been trained and tested on real-world data, derived from zip codes seen on actual U.S. Mail. The system rejects a small percentage of the examples as unclassifiable, and achieves a very low error rate on the remaining examples. The system compares favorably with other state-of-the art recognizers. While some of the methods are specific to this task, it is hoped that many of the techniques will be applicable to a wide range of recognition tasks.


A Massively Parallel Self-Tuning Context-Free Parser

Neural Information Processing Systems

ABSTRACT The Parsing and Learning System(PALS) is a massively parallel self-tuning context-free parser. It is capable of parsing sentences of unbounded length mainly due to its parse-tree representation scheme. The system is capable of improving its parsing performance through the presentation of training examples. INTRODUCTION Recent PDP research[Rumelhart et al.- 1986; Feldman and Ballard, 1982; Lippmann, 1987] involving natural language processtng[Fanty, 1988; Selman, 1985; Waltz and Pollack, 1985] have unrealistically restricted sentences to a fixed length. A solution to this problem was presented in the system CONPARSE[Charniak and Santos.


An Analog VLSI Chip for Thin-Plate Surface Interpolation

Neural Information Processing Systems

Reconstructing a surface from sparse sensory data is a well-known problem iIi computer vision. This paper describes an experimental analog VLSI chip for smooth surface interpolation from sparse depth data. An eight-node ID network was designed in 3J.lm CMOS and successfully tested.


Programmable Analog Pulse-Firing Neural Networks

Neural Information Processing Systems

ABSTRACT We describe pulse - stream firing integrated circuits that implement asynchronous analog neural networks. Synaptic weights are stored dynamically, and weighting uses time-division of the neural pulses from a signalling neuron to a receiving neuron. MOS transistors in their "ON" state act as variable resistors to control a capacitive discharge, and time-division is thus achieved by a small synapse circuit cell. The VLSI chip set design uses 2.5J.1.m INTRODUCTION Neural network implementations fall into two broad classes - digital [1,2] and analog (e.g. The strengths of a digital approach include the ability to use well-proven design techniques, high noise immunity, and the ability to implement programmable networks.



Heterogeneous Neural Networks for Adaptive Behavior in Dynamic Environments

Neural Information Processing Systems

This heterogeneity is crucial to the flexible generation of behavior which is essential for survival in a complex, dynamic environment. It may also provide powerful insights into the design of artificial neural networks. In this paper, we describe a heterogeneous neural network for controlling the wa1king of a simulated insect. This controller is inspired by the neuroethological and neurobiological literature on insect locomotion. It exhibits a variety of statically stable gaits at different speeds simply by varying the tonic activity of a single cell. It can also adapt to perturbations as a natural consequence of its design. INTRODUCTION Even very simple animals exhibit a dazzling variety of complex behaviors which they continuously adapt to the changing circumstances of their environment. Nervous systems evolved in order to generate appropriate behavior in dynamic, uncertain situations and thus insure the survival of the organisms containing them.


Computer Modeling of Associative Learning

Neural Information Processing Systems

The output of the model of the four-neuron network di sp 1ays changes in the temporal vari at i on of membrane potential similar to those observed in electrophysiological measurements.


Modeling the Olfactory Bulb - Coupled Nonlinear Oscillators

Neural Information Processing Systems

A mathematical model based on the bulbar anatomy and electrophysiology is described. Simulations produce a 35-60 Hz modulated activity coherent across the bulb, mimicing the observed field potentials. The decision states (for the odor information) here can be thought of as stable cycles, rather than point stable states typical of simpler neuro-computing models. Analysis and simulations show that a group of coupled nonlinear oscillators are responsible for the oscillatory activities determined by the odor input, andthat the bulb, with appropriate inputs from higher centers, can enhance or suppress the sensitivity to partiCUlar odors. The model provides a framework in which to understand the transform between odor input and the bulbar output to olfactory cortex.


An Information Theoretic Approach to Rule-Based Connectionist Expert Systems

Neural Information Processing Systems

We discuss in this paper architectures for executing probabilistic rule-bases in a parallel manner,using as a theoretical basis recently introduced information-theoretic models. We will begin by describing our (non-neural) learning algorithm and theory of quantitative rule modelling, followed by a discussion on the exact nature of two particular models. Finally we work through an example of our approach, going from database to rules to inference network, and compare the network's performance with the theoretical limits for specific problems.


Use of Multi-Layered Networks for Coding Speech with Phonetic Features

Neural Information Processing Systems

McGill University Montreal, Canada H3A2A7 PieroCosi Centro di Studio per Ie Ricerche di Fonetica, C.N.R., Via Oberdan,10, 35122 Padova, Italy ABSTRACT Preliminary results on speaker-independant speech recognition are reported. A method that combines expertise on neural networks with expertise on speech recognition is used to build the recognition systems. For transient sounds, eventdriven propertyextractors with variable resolution in the time and frequency domains are used. For sonorant speech, a model of the human auditory system is preferred to FFT as a front-end module. INTRODUCTION Combining a structural or knowledge-based approach for describing speech units with neural networks capable of automatically learning relations between acoustic properties and speech units is the research effort we are attempting.