Goto

Collaborating Authors

 Networks


Found Graph Data and Planted Vertex Covers

Neural Information Processing Systems

A typical way in which network data is recorded is to measure all interactions involving a specified set of core nodes, which produces a graph containing this core together with a potentially larger set of fringe nodes that link to the core. Interactions between nodes in the fringe, however, are not present in the resulting graph data. For example, a phone service provider may only record calls in which at least one of the participants is a customer; this can include calls between a customer and a non-customer, but not between pairs of non-customers. Knowledge of which nodes belong to the core is crucial for interpreting the dataset, but this metadata is unavailable in many cases, either because it has been lost due to difficulties in data provenance, or because the network consists of "found data" obtained in settings such as counter-surveillance. This leads to an algorithmic problem of recovering the core set. Since the core is a vertex cover, we essentially have a planted vertex cover problem, but with an arbitrary underlying graph. We develop a framework for analyzing this planted vertex cover problem, based on the theory of fixed-parameter tractability, together with algorithms for recovering the core. Our algorithms are fast, simple to implement, and out-perform several baselines based on core-periphery structure on various real-world datasets.


A New Segment Routing method with Swap Node Selection Strategy Based on Deep Reinforcement Learning for Software Defined Network

arXiv.org Artificial Intelligence

The existing segment routing (SR) methods need to determine the routing first and then use path segmentation approaches to select swap nodes to form a segment routing path (SRP). They require re-segmentation of the path when the routing changes. Furthermore, they do not consider the flow table issuance time, which cannot maximize the speed of issuance flow table. To address these issues, this paper establishes an optimization model that can simultaneously form routing strategies and path segmentation strategies for selecting the appropriate swap nodes to reduce flow table issuance time. It also designs an intelligent segment routing algorithm based on deep reinforcement learning (DRL-SR) to solve the proposed model. First, a traffic matrix is designed as the state space for the deep reinforcement learning agent; this matrix includes multiple QoS performance indicators, flow table issuance time overhead and SR label stack depth. Second, the action selection strategy and corresponding reward function are designed, where the agent selects the next node considering the routing; in addition, the action selection strategy whether the newly added node is selected as the swap node and the corresponding reward function are designed considering the time cost factor for the controller to issue the flow table to the swap node. Finally, a series of experiments and their results show that, compared with the existing methods, the designed segmented route optimization model and the intelligent solution algorithm (DRL-SR) can reduce the time overhead required to complete the segmented route establishment task while optimizing performance metrics such as throughput, delays and packet losses.


Comparative Analysis of Deep Learning Models for Real-World ISP Network Traffic Forecasting

arXiv.org Artificial Intelligence

Traffic monitoring is a cornerstone of effective network management and cybersecurity, providing Internet Service Providers (ISPs) with critical insights to detect anomalies, mitigate congestion, and maintain network performance [1]. The surge in video streaming, cloud computing, and online gaming is driving rapid growth in internet usage, contributing to increasingly complex and less predictable network traffic. Efficient network monitoring allows ISPs to maintain service quality, mitigate security risks, and optimize bandwidth in real time [2]. However, real-time monitoring alone is insufficient for proactively managing network resources. To anticipate variations in demand and prevent service disruptions, ISPs increasingly adopt advanced forecasting techniques to predict traffic patterns and optimize resource allocation in advance [3]. Accurate traffic forecasting allows ISPs to efficiently allocate resources, scale network capacity, and sustain service quality under fluctuating loads [3]. The rise of diverse, high-bandwidth services has significantly increased network traffic variability. Traditional models like ARIMA and exponential smoothing, which assume linearity, struggle with ISP data due to prevalent non-linear and high-frequency fluctuations, especially during peak traffic hours [4]. These limitations have driven the adoption of deep learning models, particularly neural networks, which excel at capturing complex temporal dependencies across various forecasting domains [5].


Ordered Topological Deep Learning: a Network Modeling Case Study

arXiv.org Artificial Intelligence

Computer networks are the foundation of modern digital infrastructure, facilitating global communication and data exchange. As demand for reliable high-bandwidth connectivity grows, advanced network modeling techniques become increasingly essential to optimize performance and predict network behavior. Traditional modeling methods, such as packet-level simulators and queueing theory, have notable limitations --either being computationally expensive or relying on restrictive assumptions that reduce accuracy. In this context, the deep learning-based RouteNet family of models has recently redefined network modeling by showing an unprecedented cost-performance trade-off. In this work, we revisit RouteNet's sophisticated design and uncover its hidden connection to Topological Deep Learning (TDL), an emerging field that models higher-order interactions beyond standard graph-based methods. We demonstrate that, although originally formulated as a heterogeneous Graph Neural Network, RouteNet serves as the first instantiation of a new form of TDL. More specifically, this paper presents OrdGCCN, a novel TDL framework that introduces the notion of ordered neighbors in arbitrary discrete topological spaces, and shows that RouteNet's architecture can be naturally described as an ordered topological neural network. To the best of our knowledge, this marks the first successful real-world application of state-of-the-art TDL principles --which we confirm through extensive testbed experiments--, laying the foundation for the next generation of ordered TDL-driven applications.


Fast Routing under Uncertainty: Adaptive Learning in Congestion Games with Exponential Weights

Neural Information Processing Systems

We examine an adaptive learning framework for nonatomic congestion games where the players' cost functions may be subject to exogenous fluctuations (e.g., due to disturbances in the network, variations in the traffic going through a link, etc.). In this setting, the popular multiplicative / exponential weights algorithm enjoys an O(1/ T) equilibrium convergence rate; however, this rate is suboptimal in static environments - i.e., when the network is not subject to randomness.


Learning to Configure Computer Networks with Neural Algorithmic Reasoning Martin Vechev 1 Laurent Vanbever

Neural Information Processing Systems

We present a new method for scaling automatic configuration of computer networks. The key idea is to relax the computationally hard search problem of finding a configuration that satisfies a given specification into an approximate objective amenable to learning-based techniques. Based on this idea, we train a neural algorithmic model which learns to generate configurations likely to (fully or partially) satisfy a given specification under existing routing protocols. By relaxing the rigid satisfaction guarantees, our approach (i) enables greater flexibility: it is protocol-agnostic, enables cross-protocol reasoning, and does not depend on hardcoded rules; and (ii) finds configurations for much larger computer networks than previously possible. Our learned synthesizer is up to 490 faster than state-of-the-art SMT-based methods, while producing configurations which on average satisfy more than 92% of the provided requirements.


SafeSlice: Enabling SLA-Compliant O-RAN Slicing via Safe Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Deep reinforcement learning (DRL)-based slicing policies have shown significant success in simulated environments but face challenges in physical systems such as open radio access networks (O-RANs) due to simulation-to-reality gaps. These policies often lack safety guarantees to ensure compliance with service level agreements (SLAs), such as the strict latency requirements of immersive applications. As a result, a deployed DRL slicing agent may make resource allocation (RA) decisions that degrade system performance, particularly in previously unseen scenarios. Real-world immersive applications require maintaining SLA constraints throughout deployment to prevent risky DRL exploration. In this paper, we propose SafeSlice to address both the cumulative (trajectory-wise) and instantaneous (state-wise) latency constraints of O-RAN slices. We incorporate the cumulative constraints by designing a sigmoid-based risk-sensitive reward function that reflects the slices' latency requirements. Moreover, we build a supervised learning cost model as part of a safety layer that projects the slicing agent's RA actions to the nearest safe actions, fulfilling instantaneous constraints. We conduct an exhaustive experiment that supports multiple services, including real virtual reality (VR) gaming traffic, to investigate the performance of SafeSlice under extreme and changing deployment conditions. SafeSlice achieves reductions of up to 83.23% in average cumulative latency, 93.24% in instantaneous latency violations, and 22.13% in resource consumption compared to the baselines. The results also indicate SafeSlice's robustness to changing the threshold configurations of latency constraints, a vital deployment scenario that will be realized by the O-RAN paradigm to empower mobile network operators (MNOs).


End-to-End Edge AI Service Provisioning Framework in 6G ORAN

arXiv.org Artificial Intelligence

With the advent of 6G, Open Radio Access Network (O-RAN) architectures are evolving to support intelligent, adaptive, and automated network orchestration. This paper proposes a novel Edge AI and Network Service Orchestration framework that leverages Large Language Model (LLM) agents deployed as O-RAN rApps. The proposed LLM-agent-powered system enables interactive and intuitive orchestration by translating the user's use case description into deployable AI services and corresponding network configurations. The LLM agent automates multiple tasks, including AI model selection from repositories (e.g., Hugging Face), service deployment, network adaptation, and real-time monitoring via xApps. We implement a prototype using open-source O-RAN projects (OpenAirInterface and FlexRIC) to demonstrate the feasibility and functionality of our framework. Our demonstration showcases the end-to-end flow of AI service orchestration, from user interaction to network adaptation, ensuring Quality of Service (QoS) compliance. This work highlights the potential of integrating LLM-driven automation into 6G O-RAN ecosystems, paving the way for more accessible and efficient edge AI ecosystems.


Evaluating a Novel Neuroevolution and Neural Architecture Search System

arXiv.org Artificial Intelligence

The choice of neural network features can have a large impact on both the accuracy and speed of the network. Despite the current industry shift towards large transformer models, specialized binary classifiers remain critical for numerous practical applications where computational efficiency and low latency are essential. Neural network features tend to be developed homogeneously, resulting in slower or less accurate networks when testing against multiple datasets. In this paper, we show the effectiveness of Neuvo NAS+ a novel Python implementation of an extended Neural Architecture Search (NAS+) which allows the user to optimise the training parameters of a network as well as the network's architecture. We provide an in-depth analysis of the importance of catering a network's architecture to each dataset. We also describe the design of the Neuvo NAS+ system that selects network features on a task-specific basis including network training hyper-parameters such as the number of epochs and batch size. Results show that the Neuvo NAS+ task-specific approach significantly outperforms several machine learning approaches such as Naive Bayes, C4.5, Support Vector Machine and a standard Artificial Neural Network for solving a range of binary classification problems in terms of accuracy. Our experiments demonstrate substantial diversity in evolved network architectures across different datasets, confirming the value of task-specific optimization. Additionally, Neuvo NAS+ outperforms other evolutionary algorithm optimisers in terms of both accuracy and computational efficiency, showing that properly optimized binary classifiers can match or exceed the performance of more complex models while requiring significantly fewer computational resources.


Global Convergence and Rich Feature Learning in $L$-Layer Infinite-Width Neural Networks under $\mu$P Parametrization

arXiv.org Machine Learning

Deep learning has achieved remarkable success in various machine learning tasks, from image classification (Krizhevsky et al., 2012) and speech recognition (Hinton et al., 2012) to game playing (Silver et al., 2016). Yet this empirical success has posed a significant theoretical challenge: how can we explain the effectiveness of neural networks given their non-convex optimization landscape and over-parameterized nature? Traditional optimization and learning theory frameworks struggle to provide satisfactory explanations. A breakthrough came with the study of infinite-width neural networks, where the network behavior can be precisely characterized in the limit of infinite width. This theoretical framework has spawned several important approaches to understanding neural networks, with the Neural Tangent Kernel (NTK) emerging as a prominent example. Under the NTK parametrization (NTP) (Jacot et al., 2018), neural network training behaves like a linear model: the features learned during training in each layer remain essentially identical to