Track & Field
GAIA: Rethinking Action Quality Assessment for AI-Generated Videos
Assessing action quality is both imperative and challenging due to its significant impact on the quality of AI-generated videos, further complicated by the inherently ambiguous nature of actions within AI-generated video (AIGV). Current action quality assessment (AQA) algorithms predominantly focus on actions from real specific scenarios and are pre-trained with normative action features, thus rendering them inapplicable in AIGVs. To address these problems, we construct GAIA, a Generic AI-generated Action dataset, by conducting a large-scale subjective evaluation from a novel causal reasoning-based perspective, resulting in 971,244 ratings among 9,180 video-action pairs. Based on GAIA, we evaluate a suite of popular text-to-video (T2V) models on their ability to generate visually rational actions, revealing their pros and cons on different categories of actions. We also extend GAIA as a testbed to benchmark the AQA capacity of existing automatic evaluation methods. Results show that traditional AQA methods, action-related metrics in recent T2V benchmarks, and mainstream video quality methods perform poorly with an average SRCC of 0.454, 0.191, and 0.519, respectively, indicating a sizable gap between current models and human action perception patterns in AIGVs. Our findings underscore the significance of action quality as a unique perspective for studying AIGVs and can catalyze progress towards methods with enhanced capacities for AQA in AIGVs.
GAIA: Rethinking Action Quality Assessment for AI-Generated Videos
Assessing action quality is both imperative and challenging due to its significant impact on the quality of AI-generated videos, further complicated by the inherently ambiguous nature of actions within AI-generated video (AIGV). Current action quality assessment (AQA) algorithms predominantly focus on actions from real specific scenarios and are pre-trained with normative action features, thus rendering them inapplicable in AIGVs. To address these problems, we construct GAIA, a Generic AI-generated Action dataset, by conducting a large-scale subjective evaluation from a novel causal reasoning-based perspective, resulting in 971,244 ratings among 9,180 video-action pairs. Based on GAIA, we evaluate a suite of popular text-to-video (T2V) models on their ability to generate visually rational actions, revealing their pros and cons on different categories of actions. We also extend GAIA as a testbed to benchmark the AQA capacity of existing automatic evaluation methods. Results show that traditional AQA methods, action-related metrics in recent T2V benchmarks, and mainstream video quality methods perform poorly with an average SRCC of 0.454, 0.191, and 0.519, respectively, indicating a sizable gap between current models and human action perception patterns in AIGVs. Our findings underscore the significance of action quality as a unique perspective for studying AIGVs and can catalyze progress towards methods with enhanced capacities for AQA in AIGVs.
Continual Learning for Multiple Modalities
Continual learning aims to learn knowledge of tasks observed in sequential time steps while mitigating the forgetting of previously learned knowledge. Existing methods were proposed under the assumption of learning a single modality (e.g., image) over time, which limits their applicability in scenarios involving multiple modalities. In this work, we propose a novel continual learning framework that accommodates multiple modalities (image, video, audio, depth, and text). We train a model to align various modalities with text, leveraging its rich semantic information. However, this increases the risk of forgetting previously learned knowledge, exacerbated by the differing input traits of each task. To alleviate the overwriting of the previous knowledge of modalities, we propose a method for aggregating knowledge within and across modalities. The aggregated knowledge is obtained by assimilating new information through self-regularization within each modality and associating knowledge between modalities by prioritizing contributions from relevant modalities. Furthermore, we propose a strategy that re-aligns the embeddings of modalities to resolve biased alignment between modalities. We evaluate the proposed method in a wide range of continual learning scenarios using multiple datasets with different modalities. Extensive experiments demonstrate that ours outperforms existing methods in the scenarios, regardless of whether the identity of the modality is given.
1 Details for Dataset Partitioning
In this section, we present the comparison of Meta-Adapter and other methods on the remaining seven datasets under different few-shot settings in Table 1. We provide the comparison of Meta-Adapter with the SOTA prompt-learning method, CoCoOp [9] in Figure 1. All experiments are conducted under the 16-shot setting. It is clear that Meta-Adapter demonstrates superior generalizability over CoCoOp by large margins. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories.
Uncovering the Hidden Dynamics of Video Self-supervised Learning under Distribution Shifts Ahmad Beirami
Video self-supervised learning (VSSL) has made significant progress in recent years. However, the exact behavior and dynamics of these models under different forms of distribution shift are not yet known. In this paper, we comprehensively study the behavior of six popular self-supervised methods (v-SimCLR, v-MoCo, v-BYOL, v-SimSiam, v-DINO, v-MAE) in response to various forms of natural distribution shift, i.e., (i) context shift, (ii) viewpoint shift, (iii) actor shift, (iv) source shift, (v) generalizability to unknown classes (zero-shot), and (vi) open-set recognition. To perform this extensive study, we carefully craft a test bed consisting of 17 in-distribution and out-of-distribution benchmark pairs using available public datasets and a series of evaluation protocols to stress-test the different methods under the intended shifts.