Olympic Games
No Free Lunch in LLM Watermarking: Trade-offs in Watermarking Design Choices
Advances in generative models have made it possible for AI-generated text, code, and images to mirror human-generated content in many applications. Watermarking, a technique that aims to embed information in the output of a model to verify its source, is useful for mitigating the misuse of such AI-generated content. However, we show that common design choices in LLM watermarking schemes make the resulting systems surprisingly susceptible to attack--leading to fundamental trade-offs in robustness, utility, and usability. To navigate these trade-offs, we rigorously study a set of simple yet effective attacks on common watermarking systems, and propose guidelines and defenses for LLM watermarking in practice.
Fact-checking AI-generated news reports: Can LLMs catch their own lies?
Yao, Jiayi, Sun, Haibo, Xue, Nianwen
In this paper, we evaluate the ability of Large Language Models (LLMs) to assess the veracity of claims in ''news reports'' generated by themselves or other LLMs. Our goal is to determine whether LLMs can effectively fact-check their own content, using methods similar to those used to verify claims made by humans. Our findings indicate that LLMs are more effective at assessing claims in national or international news stories than in local news stories, better at evaluating static information than dynamic information, and better at verifying true claims compared to false ones. We hypothesize that this disparity arises because the former types of claims are better represented in the training data. Additionally, we find that incorporating retrieved results from a search engine in a Retrieval-Augmented Generation (RAG) setting significantly reduces the number of claims an LLM cannot assess. However, this approach also increases the occurrence of incorrect assessments, partly due to irrelevant or low-quality search results. This diagnostic study highlights the need for future research on fact-checking machine-generated reports to prioritize improving the precision and relevance of retrieved information to better support fact-checking efforts. Furthermore, claims about dynamic events and local news may require human-in-the-loop fact-checking systems to ensure accuracy and reliability.
ClashEval: Quantifying the tug-of-war between an LLM's internal prior and external evidence Eric Wu* Department of Biomedical Data Science Department of Electrical Engineering Stanford University
Retrieval augmented generation (RAG) is frequently used to mitigate hallucinations and provide up-to-date knowledge for large language models (LLMs). However, given that document retrieval is an imprecise task and sometimes results in erroneous or even harmful content being presented in context, this raises the question of how LLMs handle retrieved information: If the provided content is incorrect, does the model know to ignore it, or does it recapitulate the error? Conversely, when the model's initial response is incorrect, does it always know to use the retrieved information to correct itself, or does it insist on its wrong prior response? To answer this, we curate a dataset of over 1200 questions across six domains (e.g., drug dosages, Olympic records, locations) along with content relevant to answering each question. We further apply precise perturbations to the answers in the content that range from subtle to blatant errors.
OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI
The evolution of Artificial Intelligence (AI) has been significantly accelerated by advancements in Large Language Models (LLMs) and Large Multimodal Models (LMMs), gradually showcasing potential cognitive reasoning abilities in problemsolving and scientific discovery (i.e., AI4Science) once exclusive to human intellect. To comprehensively evaluate current models' performance in cognitive reasoning abilities, we introduce OlympicArena, which includes 11,163 bilingual problems across both text-only and interleaved text-image modalities. These challenges encompass a wide range of disciplines spanning seven fields and 62 international Olympic competitions, rigorously examined for data leakage. We argue that the challenges in Olympic competition problems are ideal for evaluating AI's cognitive reasoning due to their complexity and interdisciplinary nature, which are essential for tackling complex scientific challenges and facilitating discoveries. Beyond evaluating performance across various disciplines using answer-only criteria, we conduct detailed experiments and analyses from multiple perspectives. We delve into the models' cognitive reasoning abilities, their performance across different modalities, and their outcomes in process-level evaluations, which are vital for tasks requiring complex reasoning with lengthy solutions. Our extensive evaluations reveal that even advanced models like GPT-4o only achieve a 39.97% overall accuracy (28.67% for mathematics and 29.71% for physics), illustrating current AI limitations in complex reasoning and multimodal integration. Through the OlympicArena, we aim to advance AI towards superintelligence, equipping it to address more complex challenges in science and beyond. We also provide a comprehensive set of resources to support AI research, including a benchmark dataset, an open-source annotation platform, a detailed evaluation tool, and a leaderboard with automatic submission features.
ReAgent: Reversible Multi-Agent Reasoning for Knowledge-Enhanced Multi-Hop QA
Xinjie, Zhao, Gao, Fan, Yang, Rui, Chen, Yingjian, Wang, Yuyang, Zhu, Ying, Tang, Jiacheng, Li, Irene
Recent advances in large language models (LLMs) have significantly improved multi-hop question answering (QA) through direct Chain-of-Thought (CoT) reasoning. However, the irreversible nature of CoT leads to error accumulation, making it challenging to correct mistakes in multi-hop reasoning. This paper introduces ReAgent: a Reversible multi-Agent collaborative framework augmented with explicit backtracking mechanisms, enabling reversible multi-hop reasoning. By incorporating text-based retrieval, information aggregation and validation, our system can detect and correct errors mid-reasoning, leading to more robust and interpretable QA outcomes. The framework and experiments serve as a foundation for future work on error-tolerant QA systems. Empirical evaluations across three benchmarks indicate ReAgent's efficacy, yielding average about 6\% improvements against baseline models.
M2-omni: Advancing Omni-MLLM for Comprehensive Modality Support with Competitive Performance
Guo, Qingpei, Song, Kaiyou, Feng, Zipeng, Ma, Ziping, Zhang, Qinglong, Gao, Sirui, Yu, Xuzheng, Sun, Yunxiao, Chang, Tai-Wei, Chen, Jingdong, Yang, Ming, Zhou, Jun
We present M2-omni, a cutting-edge, open-source omni-MLLM that achieves competitive performance to GPT-4o. M2-omni employs a unified multimodal sequence modeling framework, which empowers Large Language Models(LLMs) to acquire comprehensive cross-modal understanding and generation capabilities. Specifically, M2-omni can process arbitrary combinations of audio, video, image, and text modalities as input, generating multimodal sequences interleaving with audio, image, or text outputs, thereby enabling an advanced and interactive real-time experience. The training of such an omni-MLLM is challenged by significant disparities in data quantity and convergence rates across modalities. To address these challenges, we propose a step balance strategy during pre-training to handle the quantity disparities in modality-specific data. Additionally, a dynamically adaptive balance strategy is introduced during the instruction tuning stage to synchronize the modality-wise training progress, ensuring optimal convergence. Notably, we prioritize preserving strong performance on pure text tasks to maintain the robustness of M2-omni's language understanding capability throughout the training process. To our best knowledge, M2-omni is currently a very competitive open-source model to GPT-4o, characterized by its comprehensive modality and task support, as well as its exceptional performance. We expect M2-omni will advance the development of omni-MLLMs, thus facilitating future research in this domain.
The study of short texts in digital politics: Document aggregation for topic modeling
Nakka, Nitheesha, Yalcin, Omer F., Desmarais, Bruce A., Rajtmajer, Sarah, Monroe, Burt
Statistical topic modeling is widely used in political science to study text. Researchers examine documents of varying lengths, from tweets to speeches. There is ongoing debate on how document length affects the interpretability of topic models. We investigate the effects of aggregating short documents into larger ones based on natural units that partition the corpus. In our study, we analyze one million tweets by U.S. state legislators from April 2016 to September 2020. We find that for documents aggregated at the account level, topics are more associated with individual states than when using individual tweets. This finding is replicated with Wikipedia pages aggregated by birth cities, showing how document definitions can impact topic modeling results.
Set-Theoretic Compositionality of Sentence Embeddings
Bansal, Naman, mahajan, Yash, Sinha, Sanjeev, Karmaker, Santu
Sentence encoders play a pivotal role in various NLP tasks; hence, an accurate evaluation of their compositional properties is paramount. However, existing evaluation methods predominantly focus on goal task-specific performance. This leaves a significant gap in understanding how well sentence embeddings demonstrate fundamental compositional properties in a task-independent context. Leveraging classical set theory, we address this gap by proposing six criteria based on three core "set-like" compositions/operations: \textit{TextOverlap}, \textit{TextDifference}, and \textit{TextUnion}. We systematically evaluate $7$ classical and $9$ Large Language Model (LLM)-based sentence encoders to assess their alignment with these criteria. Our findings show that SBERT consistently demonstrates set-like compositional properties, surpassing even the latest LLMs. Additionally, we introduce a new dataset of ~$192$K samples designed to facilitate future benchmarking efforts on set-like compositionality of sentence embeddings.
MEBench: Benchmarking Large Language Models for Cross-Document Multi-Entity Question Answering
Multi-entity question answering (MEQA) represents significant challenges for large language models (LLM) and retrieval-augmented generation (RAG) systems, which frequently struggle to consolidate scattered information across diverse documents. While existing methods excel at single-document comprehension, they often struggle with cross-document aggregation, particularly when resolving entity-dense questions like "What is the distribution of ACM Fellows among various fields of study?", which require integrating entity-centric insights from heterogeneous sources (e.g., Wikipedia pages). To address this gap, we introduce MEBench, a novel multi-document, multi-entity benchmark designed to systematically evaluate LLMs' capacity to retrieve, consolidate, and reason over fragmented information. Our benchmark comprises 4,780 questions which are systematically categorized into three primary categories, further divided into eight distinct types, ensuring broad coverage of real-world multi-entity reasoning scenarios. Our experiments on state-of-the-art LLMs (e.g., GPT-4, Llama-3) and RAG pipelines reveal critical limitations: even advanced models achieve only 59% accuracy on MEBench. Our benchmark emphasizes the importance of completeness and factual precision of information extraction in MEQA tasks, using Entity-Attributed F1 (EA-F1) metric for granular evaluation of entity-level correctness and attribution validity. MEBench not only highlights systemic weaknesses in current LLM frameworks but also provides a foundation for advancing robust, entity-aware QA architectures.