Games
Dual Critic Reinforcement Learning under Partial Observability, Tong Wei
Partial observability in environments poses significant challenges that impede the formation of effective policies in reinforcement learning. Prior research has shown that borrowing the complete state information can enhance sample efficiency. This strategy, however, frequently encounters unstable learning with high variance in practical applications due to the over-reliance on complete information. This paper introduces DCRL, a Dual Critic Reinforcement Learning framework designed to adaptively harness full-state information during training to reduce variance for optimized online performance. In particular, DCRL incorporates two distinct critics: an oracle critic with access to complete state information and a standard critic functioning within the partially observable context. It innovates a synergistic strategy to meld the strengths of the oracle critic for efficiency improvement and the standard critic for variance reduction, featuring a novel mechanism for seamless transition and weighting between them. We theoretically prove that DCRL mitigates the learning variance while maintaining unbiasedness. Extensive experimental analyses across the Box2D and Box3D environments have verified DCRL's superior performance.
Prediction-Powered Ranking of Large Language Models
Large language models are often ranked according to their level of alignment with human preferences--a model is better than other models if its outputs are more frequently preferred by humans. One of the popular ways to elicit human preferences utilizes pairwise comparisons between the outputs provided by different models to the same inputs. However, since gathering pairwise comparisons by humans is costly and time-consuming, it has become a common practice to gather pairwise comparisons by a strong large language model--a model strongly aligned with human preferences. Surprisingly, practitioners cannot currently measure the uncertainty that any mismatch between human and model preferences may introduce in the constructed rankings. In this work, we develop a statistical framework to bridge this gap. Given a (small) set of pairwise comparisons by humans and a large set of pairwise comparisons by a model, our framework provides a rank-set--a set of possible ranking positions--for each of the models under comparison. Moreover, it guarantees that, with a probability greater than or equal to a user-specified value, the rank-sets cover the true ranking consistent with the distribution of human pairwise preferences asymptotically. Using pairwise comparisons made by humans in the LMSYS Chatbot Arena platform and pairwise comparisons made by three strong large language models, we empirically demonstrate the effectivity of our framework and show that the rank-sets constructed using only pairwise comparisons by the strong large language models are often inconsistent with (the distribution of) human pairwise preferences.
N-Agent Ad Hoc Teamwork
Current approaches to learning cooperative multi-agent behaviors assume relatively restrictive settings. In standard fully cooperative multi-agent reinforcement learning, the learning algorithm controls all agents in the scenario, while in ad hoc teamwork, the learning algorithm usually assumes control over only a single agent in the scenario. However, many cooperative settings in the real world are much less restrictive. For example, in an autonomous driving scenario, a company might train its cars with the same learning algorithm, yet once on the road, these cars must cooperate with cars from another company. Towards expanding the class of scenarios that cooperative learning methods may optimally address, we introduce N-agent ad hoc teamwork (NAHT), where a set of autonomous agents must interact and cooperate with dynamically varying numbers and types of teammates. This paper formalizes the problem, and proposes the Policy Optimization with Agent Modelling (POAM) algorithm. POAM is a policy gradient, multi-agent reinforcement learning approach to the NAHT problem that enables adaptation to diverse teammate behaviors by learning representations of teammate behaviors. Empirical evaluation on tasks from the multi-agent particle environment and Star-Craft II shows that POAM improves cooperative task returns compared to baseline approaches, and enables out-of-distribution generalization to unseen teammates.
Team-Fictitious Play for Reaching Team-Nash Equilibrium in Multi-team Games
Multi-team games, prevalent in robotics and resource management, involve team members striving for a joint best response against other teams. Team-Nash equilibrium (TNE) predicts the outcomes of such coordinated interactions. However, can teams of self-interested agents reach TNE? We introduce Team-Fictitious Play (Team-FP), a new variant of fictitious play where agents respond to the last actions of team members and the beliefs formed about other teams with some inertia in action updates. This design is essential in team coordination beyond the classical fictitious play dynamics.
Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning
Large vision-language models (VLMs) fine-tuned on specialized visual instructionfollowing data have exhibited impressive language reasoning capabilities across various scenarios. However, this fine-tuning paradigm may not be able to efficiently learn optimal decision-making agents in multi-step goal-directed tasks from interactive environments. To address this challenge, we propose an algorithmic framework that fine-tunes VLMs with reinforcement learning (RL). Specifically, our framework provides a task description and then prompts the VLM to generate chain-of-thought (CoT) reasoning, enabling the VLM to efficiently explore intermediate reasoning steps that lead to the final text-based action. Next, the open-ended text output is parsed into an executable action to interact with the environment to obtain goal-directed task rewards. Finally, our framework uses these task rewards to fine-tune the entire VLM with RL.
GAVEL: Generating Games Via Evolution and Language Models
Automatically generating novel and interesting games is a complex task. Challenges include representing game rules in a computationally workable form, searching through the large space of potential games under most such representations, and accurately evaluating the originality and quality of previously unseen games. Prior work in automated game generation has largely focused on relatively restricted rule representations and relied on domain-specific heuristics. In this work, we explore the generation of novel games in the comparatively expansive Ludii game description language, which encodes the rules of over 1000 board games in a variety of styles and modes of play. We draw inspiration from recent advances in large language models and evolutionary computation in order to train a model that intelligently mutates and recombines games and mechanics expressed as code. We demonstrate both quantitatively and qualitatively that our approach is capable of generating new and interesting games, including in regions of the potential rules space not covered by existing games in the Ludii dataset. A sample of the generated games are available to play online through the Ludii portal.
Accelerating Nash Equilibrium Convergence in Monte Carlo Settings Through Counterfactual Value Based Fictitious Play
Counterfactual Regret Minimization (CFR) and its variants are widely recognized as effective algorithms for solving extensive-form imperfect information games. Recently, many improvements have been focused on enhancing the convergence speed of the CFR algorithm. However, most of these variants are not applicable under Monte Carlo (MC) conditions, making them unsuitable for training in largescale games. We introduce a new MC-based algorithm for solving extensive-form imperfect information games, called MCCFVFP (Monte Carlo Counterfactual Value-Based Fictitious Play). MCCFVFP combines CFR's counterfactual value calculations with fictitious play's best response strategy, leveraging the strengths of fictitious play to gain significant advantages in games with a high proportion of dominated strategies. Experimental results show that MCCFVFP achieved convergence speeds approximately 20% 50% faster than the most advanced MCCFR variants in games like poker and other test games.
xLSTM: Extended Long Short-Term Memory Maximilian Beck 1,2,3 Korbinian Pรถppel
In the 1990s, the constant error carousel and gating were introduced as the central ideas of the Long Short-Term Memory (LSTM). Since then, LSTMs have stood the test of time and contributed to numerous deep learning success stories, in particular they constituted the first Large Language Models (LLMs). However, the advent of the Transformer technology with parallelizable self-attention at its core marked the dawn of a new era, outpacing LSTMs at scale. We now raise a simple question: How far do we get in language modeling when scaling LSTMs to billions of parameters, leveraging the latest techniques from modern LLMs, but mitigating known limitations of LSTMs? Firstly, we introduce exponential gating with appropriate normalization and stabilization techniques. Secondly, we modify the LSTM memory structure, obtaining: (i) sLSTM with a scalar memory, a scalar update, and new memory mixing, (ii) mLSTM that is fully parallelizable with a matrix memory and a covariance update rule. Integrating these LSTM extensions into residual block backbones yields xLSTM blocks that are then residually stacked into xLSTM architectures. Exponential gating and modified memory structures boost xLSTM capabilities to perform favorably when compared to state-of-the-art Transformers and State Space Models, both in performance and scaling.
Elo Uncovered: Robustness and Best Practices in Language Model Evaluation
In Natural Language Processing (NLP), the Elo rating system, originally designed for ranking players in dynamic games such as chess, is increasingly being used to evaluate Large Language Models (LLMs) through "A vs B" paired comparisons. However, while popular, the system's suitability for assessing entities with constant skill levels, such as LLMs, remains relatively unexplored. We study two fundamental axioms that evaluation methods should adhere to: reliability and transitivity. We conduct an extensive evaluation of Elo behavior across simulated and real-world scenarios, demonstrating that individual Elo computations can exhibit significant volatility. We show that both axioms are not always satisfied, raising questions about the reliability of current comparative evaluations of LLMs. If the current use of Elo scores is intended to substitute the costly head-to-head comparison of LLMs, it is crucial to ensure the ranking is as robust as possible. Guided by the axioms, our findings offer concrete guidelines for enhancing the reliability of LLM evaluation methods, suggesting a need for reassessment of existing comparative approaches.
Multi-Reward Best Policy Identification Filippo Vannella Ericsson AB
Rewards are a critical aspect of formulating Reinforcement Learning (RL) problems; often, one may be interested in testing multiple reward functions, or the problem may naturally involve multiple rewards. In this study, we investigate the Multi-Reward Best Policy Identification (MR-BPI) problem, where the goal is to determine the best policy for all rewards in a given set R with minimal sample complexity and a prescribed confidence level. We derive a fundamental instancespecific lower bound on the sample complexity required by any Probably Correct (PC) algorithm in this setting. This bound guides the design of an optimal exploration policy attaining minimal sample complexity. However, this lower bound involves solving a hard non-convex optimization problem. We address this challenge by devising a convex approximation, enabling the design of sample-efficient algorithms. We propose MR-NaS, a PC algorithm with competitive performance on hard-exploration tabular environments. Extending this approach to Deep RL (DRL), we also introduce DBMR-BPI, an efficient algorithm for model-free exploration in multi-reward settings.