Urology


Valid Inference for $L_2$-Boosting

arXiv.org Machine Learning

We review several recently proposed post-selection inference frameworks and assess their transferability to the component-wise functional gradient descent algorithm (CFGD) under normality assumption for model errors, also known as $L_2$-Boosting. The CFGD is one of the most versatile toolboxes to analyze data, as it scales well to high-dimensional data sets, allows for a very flexible definition of additive regression models and incorporates inbuilt variable selection. %After addressing several issues associated with Due to the iterative nature, which can repeatedly select the same component to update, an inference framework for component-wise boosting algorithms requires adaptations of existing approaches; we propose tests and confidence intervals for linear, grouped and penalized additive model components estimated using the $L_2$-boosting selection process. We apply our framework to the prostate cancer data set and investigate the properties of our concepts in simulation studies. %The most general and promising selective inference framework for $L_2$-Boosting as well as for more general gradient-descent boosting algorithms is an sampling approach which constitutes an adoption of the recently proposed method by Yang et al. (2016).



Artificial intelligence can diagnose prostate cancer as well as a pathologist Science

#artificialintelligence

The key to that is a sharper focus on patient outcomes – measuring what works, and doesn't work, in treating patients from one clinic, region and member-state to another. For that, we need more experts – in industry, policy and academia – who help this effort grow across the EU, from one capital to another. Stakeholder groups need mobilising, and interconnecting, across Europe. The old silos in healthcare across Europe need to be dismantled.


AI Can Diagnose Prostate Cancer As Well As a Pathologist - Slashdot

#artificialintelligence

An anonymous reader quotes a report from Science Business: Chinese researchers have developed an artificial intelligence system which can diagnose cancerous prostate samples as accurately as any pathologist, holding out the possibility of streamlining and eliminating variation in the process of cancer diagnosis. The system may also help overcome shortages of trained pathologists and in the longer term lead to automated or partially-automated prostate diagnosis. Confirmation of a prostate cancer diagnosis normally requires a biopsy sample to be examined by a pathologist. Now the Chinese AI system has shown similar levels of accuracy to pathologists and can also accurately classify the level of malignancy of the cancer, eliminating the variability which can creep into human diagnoses. The pathology images were subdivided into 40,000 smaller samples of which 30,000 were used to train the software while the remaining 10,000 were used to test accuracy.


Treatment for enlarged prostate uses a robot and a jet of water

ZDNet

Procept BioRobotics, a Silicon Valley-based surgical robotics company, recently raised nearly $120 million in private equity to commercialize a treatment for a prevalent prostate condition known as benign prostatic hyperplasia (BPH). BPH, also known as enlarged prostate, affects around half of men age 60 or older and 90 percent of men age 85 or older. Founded in 1999, Procept has pioneered the first commercially available autonomous tissue removal robot to treat BPH. The company's AQUABEAM system uses autonomous robotics and advanced imaging to deliver a heat-free waterjet that removes enlarged prostate tissue. The company has presented clinical research suggesting its method carries less risk of side effects than the current surgical gold-standard, known as TURP.


Detecting novel subtypes of cancer using data science and machine learning (BREWERU18BC) at University of East Anglia on FindAPhD.com

@machinelearnbot

This PhD studentship is funded for three years by the Big C Charity. Funding comprises Home/EU fees, an annual stipend (£14,553 for 2017 entry – this increases each year in line with the GDP deflator) and £1000 per annum to support research training. Analysis of the genetic phylogeny of multifocal prostate cancer identifies multiple independent clonal expansions in neoplastic and morphologically normal prostate tissue.


Artificial Intelligence is Altering Healthcare, but Not with "Magic"

#artificialintelligence

"Let's say the urologist ordered a prostate specific antigen (PSA) test and advised the internist to have the patient follow up in three months," he said. "Maybe we called the patient twice; he missed an appointment; he doesn't return our messages. Or maybe I thought the urologist was following up, and he thought I was doing it, and it turns out cancer is developing in the patient and he doesn't know it."


Predicting Aggressive Prostate Cancer with AI – NVIDIA Developer News Center

#artificialintelligence

University of Alberta scientists developed a deep learning-based prostate cancer diagnostic platform that only uses a single drop of blood which will allow men to bypass the current painful biopsy methods. Using a GTX 1060 GPU, CUDA and the MathWorks Neural Network Toolbox, the scientists' trained their model on information from millions of cancer cell nanoparticles in the blood to recognize the unique fingerprint of aggressive prostate cancer. To test their method, they evaluated a group of 377 men who were referred to their urologist with suspected prostate cancer and found that their system called Extracellular Vesicle Fingerprint Predictive Score (EV-FPS) correctly identified men with aggressive prostate cancer 40 percent more accurately than the most common test in wide use today. "Higher sensitivity means that our test will miss fewer aggressive cancers," said John Lewis, the Alberta Cancer Foundation's Frank and Carla Sojonky Chair of Prostate Cancer Research at the University of Alberta. "For this kind of test you want the sensitivity to be as high as possible because you don't want to miss a single cancer that should be treated."


MedExpress in talks to deliver morning-after pill by drone

Daily Mail

An online pharmacy is planning to use drones to deliver the morning-after pill and Viagra following successful UK trials. MedExpress is in talks with the independent regulator for pharmacy services to dispatch medicines and the contraceptive nationwide. The company says the service will be particularly useful for people living in remote areas. They have offered assurances that the products will be delivered discreetly with purchases details blacked out on sales records and bank accounts. One challenge MedExpress faces is delivering medication safely and at temperatures that do not interfere with the drugs' effectiveness.


Amplifying intelligent drug design

#artificialintelligence

Andrew Hopkins' route into the world of science has a familiar start – an inspirational chemistry teacher at school. Less predictably, he made a career in pharmaceuticals after getting his first taste of industrial chemistry in a steelworks. Hopkins grew up in Neath, South Wales, and his first summer job was in the labs at the British Steel plant in nearby Port Talbot. 'By then I'd already got the chemistry bug,' he says. 'What I loved about chemistry is that it is the "liberal science" that allows you to go in many different directions, and it seemed like a natural choice to follow my passion.'