Goto

Collaborating Authors

 Prostate Cancer


New prostate cancer test pinpoints disease better than PSA option, study finds

FOX News

Mount Sinai urology chair Dr. Ash Tewari joins'Fox News Live' to discuss the PSA test designed to catch the'silent killer.' A new means of prostate cancer screening could emerge as an alternative to the PSA test, which has long been the first-line option. Using machine learning, a form of artificial intelligence, Swedish researchers analyzed urine samples from more than 2,000 men with prostate cancer, along with a control group. They determined that the simple, non-invasive urine test was able to detect biomarkers of prostate cancer with a high degree of accuracy -- and could also determine the grade (stage) of the disease. The results were published in the journal Cancer Research.


Foundation Models -- A Panacea for Artificial Intelligence in Pathology?

arXiv.org Artificial Intelligence

The role of artificial intelligence (AI) in pathology has evolved from aiding diagnostics to uncovering predictive morphological patterns in whole slide images (WSIs). Recently, foundation models (FMs) leveraging self-supervised pre-training have been widely advocated as a universal solution for diverse downstream tasks. However, open questions remain about their clinical applicability and generalization advantages over end-to-end learning using task-specific (TS) models. Here, we focused on AI with clinical-grade performance for prostate cancer diagnosis and Gleason grading. We present the largest validation of AI for this task, using over 100,000 core needle biopsies from 7,342 patients across 15 sites in 11 countries. We compared two FMs with a fully end-to-end TS model in a multiple instance learning framework. Our findings challenge assumptions that FMs universally outperform TS models. While FMs demonstrated utility in data-scarce scenarios, their performance converged with - and was in some cases surpassed by - TS models when sufficient labeled training data were available. Notably, extensive task-specific training markedly reduced clinically significant misgrading, misdiagnosis of challenging morphologies, and variability across different WSI scanners. Additionally, FMs used up to 35 times more energy than the TS model, raising concerns about their sustainability. Our results underscore that while FMs offer clear advantages for rapid prototyping and research, their role as a universal solution for clinically applicable medical AI remains uncertain. For high-stakes clinical applications, rigorous validation and consideration of task-specific training remain critically important. We advocate for integrating the strengths of FMs and end-to-end learning to achieve robust and resource-efficient AI pathology solutions fit for clinical use.


TRUSWorthy: Toward Clinically Applicable Deep Learning for Confident Detection of Prostate Cancer in Micro-Ultrasound

arXiv.org Artificial Intelligence

While deep learning methods have shown great promise in improving the effectiveness of prostate cancer (PCa) diagnosis by detecting suspicious lesions from trans-rectal ultrasound (TRUS), they must overcome multiple simultaneous challenges. There is high heterogeneity in tissue appearance, significant class imbalance in favor of benign examples, and scarcity in the number and quality of ground truth annotations available to train models. Failure to address even a single one of these problems can result in unacceptable clinical outcomes.We propose TRUSWorthy, a carefully designed, tuned, and integrated system for reliable PCa detection. Our pipeline integrates self-supervised learning, multiple-instance learning aggregation using transformers, random-undersampled boosting and ensembling: these address label scarcity, weak labels, class imbalance, and overconfidence, respectively. We train and rigorously evaluate our method using a large, multi-center dataset of micro-ultrasound data. Our method outperforms previous state-of-the-art deep learning methods in terms of accuracy and uncertainty calibration, with AUROC and balanced accuracy scores of 79.9% and 71.5%, respectively. On the top 20% of predictions with the highest confidence, we can achieve a balanced accuracy of up to 91%. The success of TRUSWorthy demonstrates the potential of integrated deep learning solutions to meet clinical needs in a highly challenging deployment setting, and is a significant step towards creating a trustworthy system for computer-assisted PCa diagnosis.


Leveraging Machine Learning and Deep Learning Techniques for Improved Pathological Staging of Prostate Cancer

arXiv.org Artificial Intelligence

Prostate cancer (Pca) continues to be a leading cause of cancer-related mortality in men, and the limitations in precision of traditional diagnostic methods such as the Digital Rectal Exam (DRE), Prostate-Specific Antigen (PSA) testing, and biopsies underscore the critical importance of accurate staging detection in enhancing treatment outcomes and improving patient prognosis. This study leverages machine learning and deep learning approaches, along with feature selection and extraction methods, to enhance PCa pathological staging predictions using RNA sequencing data from The Cancer Genome Atlas (TCGA). Gene expression profiles from 486 tumors were analyzed using advanced algorithms, including Random Forest (RF), Logistic Regression (LR), Extreme Gradient Boosting (XGB), and Support Vector Machine (SVM). The performance of the study is measured with respect to the F1-score, as well as precision and recall, all of which are calculated as weighted averages. The results reveal that the highest test F1-score, approximately 83%, was achieved by the Random Forest algorithm, followed by Logistic Regression at 80%, while both Extreme Gradient Boosting (XGB) and Support Vector Machine (SVM) scored around 79%. Furthermore, deep learning models with data augmentation achieved an accuracy of 71. 23%, while PCA-based dimensionality reduction reached an accuracy of 69.86%. This research highlights the potential of AI-driven approaches in clinical oncology, paving the way for more reliable diagnostic tools that can ultimately improve patient outcomes.


Adaptive Voxel-Weighted Loss Using L1 Norms in Deep Neural Networks for Detection and Segmentation of Prostate Cancer Lesions in PET/CT Images

arXiv.org Artificial Intelligence

This study proposes a new loss function for deep neural networks, L1-weighted Dice Focal Loss (L1DFL), that leverages L1 norms for adaptive weighting of voxels based on their classification difficulty, towards automated detection and segmentation of metastatic prostate cancer lesions in PET/CT scans. We obtained 380 PSMA [18-F] DCFPyL PET/CT scans of patients diagnosed with biochemical recurrence metastatic prostate cancer. We trained two 3D convolutional neural networks, Attention U-Net and SegResNet, and concatenated the PET and CT volumes channel-wise as input. The performance of our custom loss function was evaluated against the Dice and Dice Focal Loss functions. For clinical significance, we considered a detected region of interest (ROI) as a true positive if at least the voxel with the maximum standardized uptake value falls within the ROI. We assessed the models' performance based on the number of lesions in an image, tumour volume, activity, and extent of spread. The L1DFL outperformed the comparative loss functions by at least 13% on the test set. In addition, the F1 scores of the Dice Loss and the Dice Focal Loss were lower than that of L1DFL by at least 6% and 34%, respectively. The Dice Focal Loss yielded more false positives, whereas the Dice Loss was more sensitive to smaller volumes and struggled to segment larger lesions accurately. They also exhibited network-specific variations and yielded declines in segmentation accuracy with increased tumour spread. Our results demonstrate the potential of L1DFL to yield robust segmentation of metastatic prostate cancer lesions in PSMA PET/CT images. The results further highlight potential complexities arising from the variations in lesion characteristics that may influence automated prostate cancer tumour detection and segmentation. The code is publicly available at: https://github.com/ObedDzik/pca_segment.git.


Can Domain Experts Rely on AI Appropriately? A Case Study on AI-Assisted Prostate Cancer MRI Diagnosis

arXiv.org Artificial Intelligence

Despite the growing interest in human-AI decision making, experimental studies with domain experts remain rare, largely due to the complexity of working with domain experts and the challenges in setting up realistic experiments. In this work, we conduct an in-depth collaboration with radiologists in prostate cancer diagnosis based on MRI images. Building on existing tools for teaching prostate cancer diagnosis, we develop an interface and conduct two experiments to study how AI assistance and performance feedback shape the decision making of domain experts. In Study 1, clinicians were asked to provide an initial diagnosis (human), then view the AI's prediction, and subsequently finalize their decision (human-AI team). In Study 2 (after a memory wash-out period), the same participants first received aggregated performance statistics from Study 1, specifically their own performance, the AI's performance, and their human-AI team performance, and then directly viewed the AI's prediction before making their diagnosis (i.e., no independent initial diagnosis). These two workflows represent realistic ways that clinical AI tools might be used in practice, where the second study simulates a scenario where doctors can adjust their reliance and trust on AI based on prior performance feedback. Our findings show that, while human-AI teams consistently outperform humans alone, they still underperform the AI due to under-reliance, similar to prior studies with crowdworkers. Providing clinicians with performance feedback did not significantly improve the performance of human-AI teams, although showing AI decisions in advance nudges people to follow AI more. Meanwhile, we observe that the ensemble of human-AI teams can outperform AI alone, suggesting promising directions for human-AI collaboration.


Registration-Enhanced Segmentation Method for Prostate Cancer in Ultrasound Images

arXiv.org Artificial Intelligence

Prostate cancer is a major cause of cancer-related deaths in men, where early detection greatly improves survival rates. Although MRI-TRUS fusion biopsy offers superior accuracy by combining MRI's detailed visualization with TRUS's real-time guidance, it is a complex and time-intensive procedure that relies heavily on manual annotations, leading to potential errors. To address these challenges, we propose a fully automatic MRI-TRUS fusion-based segmentation method that identifies prostate tumors directly in TRUS images without requiring manual annotations. Unlike traditional multimodal fusion approaches that rely on naive data concatenation, our method integrates a registration-segmentation framework to align and leverage spatial information between MRI and TRUS modalities. This alignment enhances segmentation accuracy and reduces reliance on manual effort. Our approach was validated on a dataset of 1,747 patients from Stanford Hospital, achieving an average Dice coefficient of 0.212, outperforming TRUS-only (0.117) and naive MRI-TRUS fusion (0.132) methods, with significant improvements (p $<$ 0.01). This framework demonstrates the potential for reducing the complexity of prostate cancer diagnosis and provides a flexible architecture applicable to other multimodal medical imaging tasks.


Actor Critic with Experience Replay-based automatic treatment planning for prostate cancer intensity modulated radiotherapy

arXiv.org Artificial Intelligence

Background: Real-time treatment planning in IMRT is challenging due to complex beam interactions. AI has improved automation, but existing models require large, high-quality datasets and lack universal applicability. Deep reinforcement learning (DRL) offers a promising alternative by mimicking human trial-and-error planning. Purpose: Develop a stochastic policy-based DRL agent for automatic treatment planning with efficient training, broad applicability, and robustness against adversarial attacks using Fast Gradient Sign Method (FGSM). Methods: Using the Actor-Critic with Experience Replay (ACER) architecture, the agent tunes treatment planning parameters (TPPs) in inverse planning. Training is based on prostate cancer IMRT cases, using dose-volume histograms (DVHs) as input. The model is trained on a single patient case, validated on two independent cases, and tested on 300+ plans across three datasets. Plan quality is assessed using ProKnow scores, and robustness is tested against adversarial attacks. Results: Despite training on a single case, the model generalizes well. Before ACER-based planning, the mean plan score was 6.20$\pm$1.84; after, 93.09% of cases achieved a perfect score of 9, with a mean of 8.93$\pm$0.27. The agent effectively prioritizes optimal TPP tuning and remains robust against adversarial attacks. Conclusions: The ACER-based DRL agent enables efficient, high-quality treatment planning in prostate cancer IMRT, demonstrating strong generalizability and robustness.


Multimodal MRI-Ultrasound AI for Prostate Cancer Detection Outperforms Radiologist MRI Interpretation: A Multi-Center Study

arXiv.org Artificial Intelligence

Pre-biopsy magnetic resonance imaging (MRI) is increasingly used to target suspicious prostate lesions. This has led to artificial intelligence (AI) applications improving MRI-based detection of clinically significant prostate cancer (CsPCa). However, MRI-detected lesions must still be mapped to transrectal ultrasound (TRUS) images during biopsy, which results in missing CsPCa. This study systematically evaluates a multimodal AI framework integrating MRI and TRUS image sequences to enhance CsPCa identification. The study included 3110 patients from three cohorts across two institutions who underwent prostate biopsy. The proposed framework, based on the 3D UNet architecture, was evaluated on 1700 test cases, comparing performance to unimodal AI models that use either MRI or TRUS alone. Additionally, the proposed model was compared to radiologists in a cohort of 110 patients. The multimodal AI approach achieved superior sensitivity (80%) and Lesion Dice (42%) compared to unimodal MRI (73%, 30%) and TRUS models (49%, 27%). Compared to radiologists, the multimodal model showed higher specificity (88% vs. 78%) and Lesion Dice (38% vs. 33%), with equivalent sensitivity (79%). Our findings demonstrate the potential of multimodal AI to improve CsPCa lesion targeting during biopsy and treatment planning, surpassing current unimodal models and radiologists; ultimately improving outcomes for prostate cancer patients.


AI in Oncology: Transforming Cancer Detection through Machine Learning and Deep Learning Applications

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has potential to revolutionize the field of oncology by enhancing the precision of cancer diagnosis, optimizing treatment strategies, and personalizing therapies for a variety of cancers. This review examines the limitations of conventional diagnostic techniques and explores the transformative role of AI in diagnosing and treating cancers such as lung, breast, colorectal, liver, stomach, esophageal, cervical, thyroid, prostate, and skin cancers. The primary objective of this paper is to highlight the significant advancements that AI algorithms have brought to oncology within the medical industry. By enabling early cancer detection, improving diagnostic accuracy, and facilitating targeted treatment delivery, AI contributes to substantial improvements in patient outcomes. The integration of AI in medical imaging, genomic analysis, and pathology enhances diagnostic precision and introduces a novel, less invasive approach to cancer screening. This not only boosts the effectiveness of medical facilities but also reduces operational costs. The study delves into the application of AI in radiomics for detailed cancer characterization, predictive analytics for identifying associated risks, and the development of algorithm-driven robots for immediate diagnosis. Furthermore, it investigates the impact of AI on addressing healthcare challenges, particularly in underserved and remote regions. The overarching goal of this platform is to support the development of expert recommendations and to provide universal, efficient diagnostic procedures. By reviewing existing research and clinical studies, this paper underscores the pivotal role of AI in improving the overall cancer care system. It emphasizes how AI-enabled systems can enhance clinical decision-making and expand treatment options, thereby underscoring the importance of AI in advancing precision oncology