Breast Cancer
Supplementary Material: Knowledge-based in silico models and dataset for the comparative evaluation of mammography AI for a range of breast characteristics, lesion conspicuities and doses
M-SYNTH and code for processing can be found in https://github.com/DIDSR/ Please following the instructions on Github to dowload files from Huggingface. M-SYNTH is organized into a directory structure that indicates the parameters. Each folder contains mammogram data that can be read from.raw Note that only examples with odd PHANTOM_FILEID contain lesions, others do not.
A Novel Channel Boosted Residual CNN-Transformer with Regional-Boundary Learning for Breast Cancer Detection
Mehmood, Aamir, Hu, Yue, Khan, Saddam Hussain
Recent advancements in detecting tumors using deep learning on breast ultrasound images (BUSI) have demonstrated significant success. Deep CNNs and vision-transformers (ViTs) have demonstrated individually promising initial performance. However, challenges related to model complexity and contrast, texture, and tumor morphology variations introduce uncertainties that hinder the effectiveness of current methods. This study introduces a novel hybrid framework, CB-Res-RBCMT, combining customized residual CNNs and new ViT components for detailed BUSI cancer analysis. The proposed RBCMT uses stem convolution blocks with CNN Meet Transformer (CMT) blocks, followed by new Regional and boundary (RB) feature extraction operations for capturing contrast and morphological variations. Moreover, the CMT block incorporates global contextual interactions through multi-head attention, enhancing computational efficiency with a lightweight design. Additionally, the customized inverse residual and stem CNNs within the CMT effectively extract local texture information and handle vanishing gradients. Finally, the new channel-boosted (CB) strategy enriches the feature diversity of the limited dataset by combining the original RBCMT channels with transfer learning-based residual CNN-generated maps. These diverse channels are processed through a spatial attention block for optimal pixel selection, reducing redundancy and improving the discrimination of minor contrast and texture variations. The proposed CB-Res-RBCMT achieves an F1-score of 95.57%, accuracy of 95.63%, sensitivity of 96.42%, and precision of 94.79% on the standard harmonized stringent BUSI dataset, outperforming existing ViT and CNN methods. These results demonstrate the versatility of our integrated CNN-Transformer framework in capturing diverse features and delivering superior performance in BUSI cancer diagnosis.
BI-RADS prediction of mammographic masses using uncertainty information extracted from a Bayesian Deep Learning model
Chegini, Mohaddeseh, Mahloojifar, Ali
The BI_RADS score is a probabilistic reporting tool used by radiologists to express the level of uncertainty in predicting breast cancer based on some morphological features in mammography images. There is a significant variability in describing masses which sometimes leads to BI_RADS misclassification. Using a BI_RADS prediction system is required to support the final radiologist decisions. In this study, the uncertainty information extracted by a Bayesian deep learning model is utilized to predict the BI_RADS score. The investigation results based on the pathology information demonstrate that the f1-scores of the predictions of the radiologist are 42.86%, 48.33% and 48.28%, meanwhile, the f1-scores of the model performance are 73.33%, 59.60% and 59.26% in the BI_RADS 2, 3 and 5 dataset samples, respectively. Also, the model can distinguish malignant from benign samples in the BI_RADS 0 category of the used dataset with an accuracy of 75.86% and correctly identify all malignant samples as BI_RADS 5. The Grad-CAM visualization shows the model pays attention to the morphological features of the lesions. Therefore, this study shows the uncertainty-aware Bayesian Deep Learning model can report his uncertainty about the malignancy of a lesion based on morphological features, like a radiologist.
Novel AI-Based Quantification of Breast Arterial Calcification to Predict Cardiovascular Risk
Dapamede, Theodorus, Urooj, Aisha, Joshi, Vedant, Gershon, Gabrielle, Li, Frank, Chavoshi, Mohammadreza, Brown-Mulry, Beatrice, Isaac, Rohan Satya, Mansuri, Aawez, Robichaux, Chad, Ayoub, Chadi, Arsanjani, Reza, Sperling, Laurence, Gichoya, Judy, van Assen, Marly, ONeill, Charles W., Banerjee, Imon, Trivedi, Hari
IMPORTANCE Women are underdiagnosed and undertreated for cardiovascular disease. Automatic quantification of breast arterial calcification on screening mammography can identify women at risk for cardiovascular disease and enable earlier treatment and management of disease. OBJECTIVE To determine whether artificial-intelligence based automatic quantification of BAC from screening mammograms predicts cardiovascular disease and mortality in a large, racially diverse, multi-institutional population, both independently and beyond traditional risk factors and ASCVD scores. DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study of 116,135 women from two healthcare systems (Emory Healthcare and Mayo Clinic Enterprise) who had screening mammograms and either experienced a major adverse cardiovascular event, death, or had at least 5 years of clinical follow-up. BAC was quantified using a novel transformer-based neural network architecture for semantic segmentation. BAC severity was categorized into four groups (no BAC, mild, moderate, and severe), with outcomes assessed using Kaplan-Meier analysis and Cox proportional-hazards models. MAIN OUTCOMES AND MEASURES Major Adverse Cardiovascular Events (MACE), including acute myocardial infarction, stroke, heart failure, and all-cause mortality, adjusted for traditional risk factors and Atherosclerotic CVD (ASCVD) risk scores. RESULTS BAC severity was independently associated with MACE after adjusting for cardiovascular risk factors, with increasing hazard ratios from mild (HR 1.18-1.22),
Integrating AI for Human-Centric Breast Cancer Diagnostics: A Multi-Scale and Multi-View Swin Transformer Framework
Bayatmakou, Farnoush, Taleei, Reza, Toutounchian, Milad Amir, Mohammadi, Arash
Despite advancements in Computer-Aided Diagnosis (CAD) systems, breast cancer remains one of the leading causes of cancer-related deaths among women worldwide. Recent breakthroughs in Artificial Intelligence (AI) have shown significant promise in development of advanced Deep Learning (DL) architectures for breast cancer diagnosis through mammography. In this context, the paper focuses on the integration of AI within a Human-Centric workflow to enhance breast cancer diagnostics. Key challenges are, however, largely overlooked such as reliance on detailed tumor annotations and susceptibility to missing views, particularly during test time. To address these issues, we propose a hybrid, multi-scale and multi-view Swin Transformer-based framework (MSMV-Swin) that enhances diagnostic robustness and accuracy. The proposed MSMV-Swin framework is designed to work as a decision-support tool, helping radiologists analyze multi-view mammograms more effectively. More specifically, the MSMV-Swin framework leverages the Segment Anything Model (SAM) to isolate the breast lobe, reducing background noise and enabling comprehensive feature extraction. The multi-scale nature of the proposed MSMV-Swin framework accounts for tumor-specific regions as well as the spatial characteristics of tissues surrounding the tumor, capturing both localized and contextual information. The integration of contextual and localized data ensures that MSMV-Swin's outputs align with the way radiologists interpret mammograms, fostering better human-AI interaction and trust. A hybrid fusion structure is then designed to ensure robustness against missing views, a common occurrence in clinical practice when only a single mammogram view is available.
Adaptive Deep Learning for Multiclass Breast Cancer Classification via Misprediction Risk Analysis
Sheeraz, Gul, Chen, Qun, Feiyu, Liu, MD, Zhou Fengjin
Breast cancer remains one of the leading causes of cancer-related deaths worldwide. Early detection is crucial for improving patient outcomes, yet the diagnostic process is often complex and prone to inconsistencies among pathologists. Computer-aided diagnostic approaches have significantly enhanced breast cancer detection, particularly in binary classification (benign vs. malignant). However, these methods face challenges in multiclass classification, leading to frequent mispredictions. In this work, we propose a novel adaptive learning approach for multiclass breast cancer classification using H&E-stained histopathology images. First, we introduce a misprediction risk analysis framework that quantifies and ranks the likelihood of an image being mislabeled by a classifier. This framework leverages an interpretable risk model that requires only a small number of labeled samples for training. Next, we present an adaptive learning strategy that fine-tunes classifiers based on the specific characteristics of a given dataset. This approach minimizes misprediction risk, allowing the classifier to adapt effectively to the target workload. We evaluate our proposed solutions on real benchmark datasets, demonstrating that our risk analysis framework more accurately identifies mispredictions compared to existing methods. Furthermore, our adaptive learning approach significantly improves the performance of state-of-the-art deep neural network classifiers.
A Novel Double Pruning method for Imbalanced Data using Information Entropy and Roulette Wheel Selection for Breast Cancer Diagnosis
Bacha, Soufiane, Ning, Huansheng, Mostefa, Belarbi, Sarwatt, Doreen Sebastian, Dhelim, Sahraoui
Accurate illness diagnosis is vital for effective treatment and patient safety. Machine learning models are widely used for cancer diagnosis based on historical medical data. However, data imbalance remains a major challenge, leading to hindering classifier performance and reliability. The SMOTEBoost method addresses this issue by generating synthetic data to balance the dataset, but it may overlook crucial overlapping regions near the decision boundary and can produce noisy samples. This paper proposes RE-SMOTEBoost, an enhanced version of SMOTEBoost, designed to overcome these limitations. Firstly, RE-SMOTEBoost focuses on generating synthetic samples in overlapping regions to better capture the decision boundary using roulette wheel selection. Secondly, it incorporates a filtering mechanism based on information entropy to reduce noise, and borderline cases and improve the quality of generated data. Thirdly, we introduce a double regularization penalty to control the synthetic samples proximity to the decision boundary and avoid class overlap. These enhancements enable higher-quality oversampling of the minority class, resulting in a more balanced and effective training dataset. The proposed method outperforms existing state-of-the-art techniques when evaluated on imbalanced datasets. Compared to the top-performing sampling algorithms, RE-SMOTEBoost demonstrates a notable improvement of 3.22\% in accuracy and a variance reduction of 88.8\%. These results indicate that the proposed model offers a solid solution for medical settings, effectively overcoming data scarcity and severe imbalance caused by limited samples, data collection difficulties, and privacy constraints.
Exploring Patient Data Requirements in Training Effective AI Models for MRI-based Breast Cancer Classification
Kang, Solha, De Neve, Wesley, Rameau, Francois, Ozbulak, Utku
The past decade has witnessed a substantial increase in the number of startups and companies offering AI-based solutions for clinical decision support in medical institutions. However, the critical nature of medical decision-making raises several concerns about relying on external software. Key issues include potential variations in image modalities and the medical devices used to obtain these images, potential legal issues, and adversarial attacks. Fortunately, the open-source nature of machine learning research has made foundation models publicly available and straightforward to use for medical applications. This accessibility allows medical institutions to train their own AI-based models, thereby mitigating the aforementioned concerns. Given this context, an important question arises: how much data do medical institutions need to train effective AI models? In this study, we explore this question in relation to breast cancer detection, a particularly contested area due to the prevalence of this disease, which affects approximately 1 in every 8 women. Through large-scale experiments on various patient sizes in the training set, we show that medical institutions do not need a decade's worth of MRI images to train an AI model that performs competitively with the state-of-the-art, provided the model leverages foundation models. Furthermore, we observe that for patient counts greater than 50, the number of patients in the training set has a negligible impact on the performance of models and that simple ensembles further improve the results without additional complexity.
Detecting and Monitoring Bias for Subgroups in Breast Cancer Detection AI
Kundu, Amit Kumar, Doo, Florence X., Patil, Vaishnavi, Varshney, Amitabh, Jaja, Joseph
Early breast cancer detection (BCD) through mammography screening continues to be a major focus in radiology as it plays a critical role in reducing mortality rates (Coleman (2017); Ginsburg et al. (2020)). Although artificial intelligence (AI) models can help radiologists to evaluate mammograms (Sahu et al. (2023); Evans et al. (2013); Maxwell (1999)), training such models face the challenge of limited datasets that may not fully represent all subgroups or cover variations in data distributions. Historically, certain racial groups face barriers to healthcare access because of many socio-economic factors (Azin et al. (2023); Hershman et al. (2005); Hussain-Gambles et al. (2004)). This lack of access can result in datasets that do not adequately represent these groups, potentially cause AI models to show biases for these groups. Even with seemingly balanced datasets, subtle biases may persist in the collected data due to systemic inequalities in the quality of healthcare (Obermeyer et al. (2019)). Among these groups, African American patients are often underrepresented in both breast imaging and broader healthcare datasets (Yedjou et al. (2019); Newman and Kaljee (2017)).
Leveraging large language models for structured information extraction from pathology reports
Balasubramanian, Jeya Balaji, Adams, Daniel, Roxanis, Ioannis, de Gonzalez, Amy Berrington, Coulson, Penny, Almeida, Jonas S., García-Closas, Montserrat
Background: Structured information extraction from unstructured histopathology reports facilitates data accessibility for clinical research. Manual extraction by experts is time-consuming and expensive, limiting scalability. Large language models (LLMs) offer efficient automated extraction through zero-shot prompting, requiring only natural language instructions without labeled data or training. We evaluate LLMs' accuracy in extracting structured information from breast cancer histopathology reports, compared to manual extraction by a trained human annotator. Methods: We developed the Medical Report Information Extractor, a web application leveraging LLMs for automated extraction. We developed a gold standard extraction dataset to evaluate the human annotator alongside five LLMs including GPT-4o, a leading proprietary model, and the Llama 3 model family, which allows self-hosting for data privacy. Our assessment involved 111 histopathology reports from the Breast Cancer Now (BCN) Generations Study, extracting 51 pathology features specified in the study's data dictionary. Results: Evaluation against the gold standard dataset showed that both Llama 3.1 405B (94.7% accuracy) and GPT-4o (96.1%) achieved extraction accuracy comparable to the human annotator (95.4%; p = 0.146 and p = 0.106, respectively). While Llama 3.1 70B (91.6%) performed below human accuracy (p <0.001), its reduced computational requirements make it a viable option for self-hosting. Conclusion: We developed an open-source tool for structured information extraction that can be customized by non-programmers using natural language. Its modular design enables reuse for various extraction tasks, producing standardized, structured data from unstructured text reports to facilitate analytics through improved accessibility and interoperability.