Goto

Collaborating Authors

 Neurology


Unscrambling disease progression at scale: fast inference of event permutations with optimal transport

Neural Information Processing Systems

Disease progression models infer group-level temporal trajectories of change in patients' features as a chronic degenerative condition plays out. They provide unique insight into disease biology and staging systems with individual-level clinical utility. Discrete models consider disease progression as a latent permutation of events, where each event corresponds to a feature becoming measurably abnormal. However, permutation inference using traditional maximum likelihood approaches becomes prohibitive due to combinatoric explosion, severely limiting model dimensionality and utility. Here we leverage ideas from optimal transport to model disease progression as a latent permutation matrix of events belonging to the Birkhoff polytope, facilitating fast inference via optimisation of the variational lower bound. This enables a factor of 1000 times faster inference than the current state of the art and, correspondingly, supports models with several orders of magnitude more features than the current state of the art can consider. Experiments demonstrate the increase in speed, accuracy and robustness to noise in simulation.


ViSioNS: Visual Search in Natural Scenes Benchmark Gonzalo Ruarte 1* Juan E. Kamienkowski

Neural Information Processing Systems

Visual search is an essential part of almost any everyday human interaction with the visual environment [1, 2]. Nowadays, several algorithms are able to predict gaze positions during simple observation, but few models attempt to simulate human behavior during visual search in natural scenes. Furthermore, these models vary widely in their design and exhibit differences in the datasets and metrics with which they were evaluated. Thus, there is a need for a reference point, on which each model can be tested and from where potential improvements can be derived. In this study, we select publicly available state-of-the-art visual search models and datasets in natural scenes, and provide a common framework for their evaluation. To this end, we apply a unified format and criteria, bridging the gaps between them, and we estimate the models' efficiency and similarity with humans using a specific set of metrics. This integration has allowed us to enhance the Ideal Bayesian Searcher by combining it with a neural network-based visual search model, which enables it to generalize to other datasets. The present work sheds light on the limitations of current models and how integrating different approaches with a unified criteria can lead to better algorithms. Moreover, it moves forward on bringing forth a solution for the urgent need of benchmarking data and metrics to support the development of more general human visual search computational models.


Divide-and-Conquer Predictive Coding: a Structured Bayesian Inference Algorithm Eli Sennesh 1, Hao Wu2 Department of Psychology, Vanderbilt University, Nashville, TN, USA

Neural Information Processing Systems

Unexpected stimuli induce "error" or "surprise" signals in the brain. The theory of predictive coding promises to explain these observations in terms of Bayesian inference by suggesting that the cortex implements variational inference in a probabilistic graphical model. However, when applied to machine learning tasks, this family of algorithms has yet to perform on par with other variational approaches in high-dimensional, structured inference problems. To address this, we introduce a novel predictive coding algorithm for structured generative models, that we call divide-and-conquer predictive coding (DCPC); it differs from other formulations of predictive coding, as it respects the correlation structure of the generative model and provably performs maximum-likelihood updates of model parameters, all without sacrificing biological plausibility. Empirically, DCPC achieves better numerical performance than competing algorithms and provides accurate inference in a number of problems not previously addressed with predictive coding. We provide an open implementation of DCPC in Pyro on Github.


Model-based inference of synaptic plasticity rules

Neural Information Processing Systems

Inferring the synaptic plasticity rules that govern learning in the brain is a key challenge in neuroscience. We present a novel computational method to infer these rules from experimental data, applicable to both neural and behavioral data. Our approach approximates plasticity rules using a parameterized function, employing either truncated Taylor series for theoretical interpretability or multilayer perceptrons. These plasticity parameters are optimized via gradient descent over entire trajectories to align closely with observed neural activity or behavioral learning dynamics. This method can uncover complex rules that induce long nonlinear time dependencies, particularly involving factors like postsynaptic activity and current synaptic weights. We validate our approach through simulations, successfully recovering established rules such as Oja's, as well as more intricate plasticity rules with reward-modulated terms. We assess the robustness of our technique to noise and apply it to behavioral data from Drosophila in a probabilistic reward-learning experiment. Notably, our findings reveal an active forgetting component in reward learning in flies, improving predictive accuracy over previous models. This modeling framework offers a promising new avenue for elucidating the computational principles of synaptic plasticity and learning in the brain.


Shaping the distribution of neural responses with interneurons in a recurrent circuit model

Neural Information Processing Systems

Efficient coding theory posits that sensory circuits transform natural signals into neural representations that maximize information transmission subject to resource constraints. Local interneurons are thought to play an important role in these transformations, dynamically shaping patterns of local circuit activity to facilitate and direct information flow. However, the relationship between these coordinated, nonlinear, circuit-level transformations and the properties of interneurons (e.g., connectivity, activation functions, response dynamics) remains unknown. Here, we propose a normative computational model that establishes such a relationship. Our model is derived from an optimal transport objective that conceptualizes the circuit's input-response function as transforming the inputs to achieve an efficient target response distribution. The circuit, which is comprised of primary neurons that are recurrently connected to a set of local interneurons, continuously optimizes this objective by dynamically adjusting both the synaptic connections between neurons as well as the interneuron activation functions. In an example application motivated by redundancy reduction, we construct a circuit that learns a dynamical nonlinear transformation that maps natural image data to a spherical Gaussian, significantly reducing statistical dependencies in neural responses. Overall, our results provide a framework in which the distribution of circuit responses is systematically and nonlinearly controlled by adjustment of interneuron connectivity and activation functions.


Geodesic Optimization for Predictive Shift Adaptation on EEG data

Neural Information Processing Systems

Electroencephalography (EEG) data is often collected from diverse contexts involving different populations and EEG devices. This variability can induce distribution shifts in the data X and in the biomedical variables of interest y, thus limiting the application of supervised machine learning (ML) algorithms. While domain adaptation (DA) methods have been developed to mitigate the impact of these shifts, such methods struggle when distribution shifts occur simultaneously in X and y. As state-of-the-art ML models for EEG represent the data by spatial covariance matrices, which lie on the Riemannian manifold of Symmetric Positive Definite (SPD) matrices, it is appealing to study DA techniques operating on the SPD manifold. This paper proposes a novel method termed Geodesic Optimization for Predictive Shift Adaptation (GOPSA) to address test-time multi-source DA for situations in which source domains have distinct y distributions. GOPSA exploits the geodesic structure of the Riemannian manifold to jointly learn a domain-specific re-centering operator representing site-specific intercepts and the regression model. We performed empirical benchmarks on the cross-site generalization of age-prediction models with resting-state EEG data from a large multi-national dataset (HarMNqEEG), which included 14 recording sites and more than 1500 human participants.


A Neuralink Rival Just Tested a Brain Implant in a Person

WIRED

Brain-computer interface startup Paradromics today announced that surgeons successfully inserted the company's brain implant into a patient and safely removed it after about 10 minutes. It's a step toward longer trials of the device, dubbed Connexus. It's also the latest commercial development in a growing field of companies--including Elon Musk's Neuralink--aiming to connect people's brains directly to computers. With the Connexus, Austin-based Paradromics is looking to restore speech and communication in people with spinal cord injury, stroke, or amyotrophic lateral sclerosis, also known as ALS. The device is designed to translate neural signals into synthesized speech, text, and cursor control.


Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain Activities

Neural Information Processing Systems

Decoding visual stimuli from neural responses recorded by functional Magnetic Resonance Imaging (fMRI) presents an intriguing intersection between cognitive neuroscience and machine learning, promising advancements in understanding human visual perception. However, the task is challenging due to the noisy nature of fMRI signals and the intricate pattern of brain visual representations. To mitigate these challenges, we introduce a two-phase fMRI representation learning framework. The first phase pre-trains an fMRI feature learner with a proposed Double-contrastive Mask Auto-encoder to learn denoised representations. The second phase tunes the feature learner to attend to neural activation patterns most informative for visual reconstruction with guidance from an image auto-encoder. The optimized fMRI feature learner then conditions a latent diffusion model to reconstruct image stimuli from brain activities. Experimental results demonstrate our model's superiority in generating high-resolution and semantically accurate images, substantially exceeding previous state-of-the-art methods by 39.34% in the 50-way-top-1 semantic classification accuracy.


Sheaf Hypergraph Networks

Neural Information Processing Systems

Higher-order relations are widespread in nature, with numerous phenomena involving complex interactions that extend beyond simple pairwise connections. As a result, advancements in higher-order processing can accelerate the growth of various fields requiring structured data. Current approaches typically represent these interactions using hypergraphs. We enhance this representation by introducing cellular sheaves for hypergraphs, a mathematical construction that adds extra structure to the conventional hypergraph while maintaining their local, higherorder connectivity. Drawing inspiration from existing Laplacians in the literature, we develop two unique formulations of sheaf hypergraph Laplacians: linear and non-linear. Our theoretical analysis demonstrates that incorporating sheaves into the hypergraph Laplacian provides a more expressive inductive bias than standard hypergraph diffusion, creating a powerful instrument for effectively modelling complex data structures. We employ these sheaf hypergraph Laplacians to design two categories of models: Sheaf Hypergraph Neural Networks and Sheaf Hypergraph Convolutional Networks. These models generalize classical Hypergraph Networks often found in the literature. Through extensive experimentation, we show that this generalization significantly improves performance, achieving top results on multiple benchmark datasets for hypergraph node classification.


Jan P. Bauer

Neural Information Processing Systems

Exp. Psychology, Oxford ELSC, HebrewU Department of Computing Brain Mind Institute, EPFL Gatsby Unit, UCL Imperial College London Andrew M. Saxe Christopher Summerfield Ali Hummos