Nuclear Medicine
GMAI-MMBench: A Comprehensive Multimodal Evaluation Benchmark Towards General Medical AI Pengcheng Chen 1,2 Jin Ye1,3 Guoan Wang 1,4 Yanjun Li1,4
Large Vision-Language Models (LVLMs) are capable of handling diverse data types such as imaging, text, and physiological signals, and can be applied in various fields. In the medical field, LVLMs have a high potential to offer substantial assistance for diagnosis and treatment. Before that, it is crucial to develop benchmarks to evaluate LVLMs' effectiveness in various medical applications. Current benchmarks are often built upon specific academic literature, mainly focusing on a single domain, and lacking varying perceptual granularities.
Intrinsic Self-Supervision for Data Quality Audits Fabian Grรถger, Alvaro Gonzalez-Jimenez
Benchmark datasets in computer vision often contain off-topic images, near duplicates, and label errors, leading to inaccurate estimates of model performance. In this paper, we revisit the task of data cleaning and formalize it as either a ranking problem, which significantly reduces human inspection effort, or a scoring problem, which allows for automated decisions based on score distributions. We find that a specific combination of context-aware self-supervised representation learning and distance-based indicators is effective in finding issues without annotation biases.
A Textbook Remedy for Domain Shifts: Knowledge Priors for Medical Image Analysis
While deep networks have achieved broad success in analyzing natural images, when applied to medical scans, they often fail in unexpected situations. We investigate this challenge and focus on model sensitivity to domain shifts, such as data sampled from different hospitals or data confounded by demographic variables such as sex, race, etc, in the context of chest X-rays and skin lesion images. A key finding we show empirically is that existing visual backbones lack an appropriate prior from the architecture for reliable generalization in these settings. Taking inspiration from medical training, we propose giving deep networks a prior grounded in explicit medical knowledge communicated in natural language. To this end, we introduce Knowledge-enhanced Bottlenecks (KnoBo), a class of concept bottleneck models that incorporates knowledge priors that constrain it to reason with clinically relevant factors found in medical textbooks or PubMed. KnoBo uses retrieval-augmented language models to design an appropriate concept space and an automatic training procedure for recognizing the concept. We evaluate different resources of knowledge and recognition architectures on a broad range of domain shifts across 20 datasets. In our comprehensive evaluation with two imaging modalities, KnoBo outperforms fine-tuned models on confounded datasets by 32.4 % on average. Finally, evaluations reveal that PubMed is a promising resource for making medical models less sensitive to domain shift, outperforming other resources on both diversity of information and final prediction performance.
9a439efaa34fe37177eba00737624824-Paper-Conference.pdf
Recently, interpretable machine learning has re-explored concept bottleneck models (CBM). An advantage of this model class is the user's ability to intervene on predicted concept values, affecting the downstream output. In this work, we introduce a method to perform such concept-based interventions on pretrained neural networks, which are not interpretable by design, only given a small validation set with concept labels. Furthermore, we formalise the notion of intervenability as a measure of the effectiveness of concept-based interventions and leverage this definition to fine-tune black boxes. Empirically, we explore the intervenability of black-box classifiers on synthetic tabular and natural image benchmarks. We focus on backbone architectures of varying complexity, from simple, fully connected neural nets to Stable Diffusion. We demonstrate that the proposed fine-tuning improves intervention effectiveness and often yields better-calibrated predictions. To showcase the practical utility of our techniques, we apply them to deep chest X-ray classifiers and show that fine-tuned black boxes are more intervenable than CBMs. Lastly, we establish that our methods are still effective under vision-languagemodel-based concept annotations, alleviating the need for a human-annotated validation set.
Uni-Med: A Unified Medical Generalist Foundation Model For Multi-Task Learning Via Connector-MoE Department of Electronic Engineering, Tsinghua University Fanbin Mo
Multi-modal large language models (MLLMs) have shown impressive capabilities as a general-purpose interface for various visual and linguistic tasks. However, building a unified MLLM for multi-task learning in the medical field remains a thorny challenge. To mitigate the tug-of-war problem of multi-modal multitask optimization in MLLMs, recent advances primarily focus on improving the LLM components, while neglecting the connector that bridges the gap between modalities. In this paper, we introduce Uni-Med, a novel medical generalist foundation model which consists of a universal visual feature extraction module, a connector mixture-of-experts (CMoE) module, and an LLM. Benefiting from the proposed CMoE that leverages a well-designed router with a mixture of projection experts at the connector, Uni-Med achieves efficient solution to the tug-of-war problem and can perform six different medical tasks including question answering, visual question answering, report generation, referring expression comprehension, referring expression generation and image classification. To the best of our knowledge, Uni-Med is the first effort to tackle multi-task interference at the connector in MLLMs.
Conformal Alignment: Knowing When to Trust Foundation Models with Guarantees Department of Statistics, University of Chicago
Before deploying outputs from foundation models in high-stakes tasks, it is imperative to ensure that they align with human values. For instance, in radiology report generation, reports generated by a vision-language model must align with human evaluations before their use in medical decision-making.
Integrating Deep Metric Learning with Coreset for Active Learning in 3D Segmentation
Deep learning has seen remarkable advancements in machine learning, yet it often demands extensive annotated data. Tasks like 3D semantic segmentation impose a substantial annotation burden, especially in domains like medicine, where expert annotations drive up the cost. Active learning (AL) holds great potential to alleviate this annotation burden in 3D medical segmentation. The majority of existing AL methods, however, are not tailored to the medical domain. While weakly-supervised methods have been explored to reduce annotation burden, the fusion of AL with weak supervision remains unexplored, despite its potential to significantly reduce annotation costs.
DDGS-CT: Direction-Disentangled Gaussian Splatting for Realistic Volume Rendering
Digitally reconstructed radiographs (DRRs) are simulated 2D X-ray images generated from 3D CT volumes, widely used in preoperative settings but limited in intraoperative applications due to computational bottlenecks, especially for accurate but heavy physics-based Monte Carlo methods. While analytical DRR renderers offer greater efficiency, they overlook anisotropic X-ray image formation phenomena, such as Compton scattering. We present a novel approach that marries realistic physics-inspired X-ray simulation with efficient, differentiable DRR generation using 3D Gaussian splatting (3DGS).
7 Appendix A Limitations
Table 6 provides summary statistics of domain coverage. Overall, the benchmark covers 8,637 biology images and 8,678 pathology images across 12 subdomains. Similarly, Table 7 shows summary statistics of microscopy modalities covered by Micro-Bench perception, including 10,864 images for light microscopy, 5,618 for fluorescence microscopy, and 833 images for electron microscopy across 8 microscopy imaging submodalities and 25 unique microscopy staining techniques (see Table 8). Micro-Bench Perception (Coarse-grained): Hierarchical metadata for each of the 17,235 perception images and task-specific templates (shown in Table 23) are used to create 5 coarse-grained questions and captions regarding microscopy modality, submodality, domain, subdomain, and staining technique. The use of hierarchical metadata enables the generation of options within each hierarchical level.