Goto

Collaborating Authors

 Health Care Providers & Services


Trajectory Flow Matching with Applications to Clinical Time Series Modeling Xi Zhang 1,2 Yuan Pu3 Andrew Loza

Neural Information Processing Systems

Modeling stochastic and irregularly sampled time series is a challenging problem found in a wide range of applications, especially in medicine. Neural stochastic differential equations (Neural SDEs) are an attractive modeling technique for this problem, which parameterize the drift and diffusion terms of an SDE with neural networks. However, current algorithms for training Neural SDEs require backpropagation through the SDE dynamics, greatly limiting their scalability and stability. To address this, we propose Trajectory Flow Matching (TFM), which trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics. TFM leverages the flow matching technique from generative modeling to model time series. In this work we first establish necessary conditions for TFM to learn time series data. Next, we present a reparameterization trick which improves training stability. Finally, we adapt TFM to the clinical time series setting, demonstrating improved performance on four clinical time series datasets both in terms of absolute performance and uncertainty prediction, a crucial parameter in this setting.


Checklist

Neural Information Processing Systems

A.1 Motivation For what purpose was the dataset created? EHRs are integral for storing comprehensive patient medical records, combining structured data with detailed clinical notes. However, they often suffer from discrepancies due to unintuitive EHR system designs and human errors, posing serious risks to patient safety. To address this, we developed EHRCon. Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution, organization)?


SM3-Text-to-Query: Synthetic Multi-Model Medical Text-to-Query Benchmark

Neural Information Processing Systems

Electronic health records (EHRs) are stored in various database systems with different database models on heterogeneous storage architectures, such as relational databases, document stores, or graph databases. These different database models have a big impact on query complexity and performance. While this has been a known fact in database research, its implications for the growing number of Text-to-Query systems have surprisingly not been investigated so far. In this paper, we present SM3-Text-to-Query, the first multi-model medical Text-to-Query benchmark based on synthetic patient data from Synthea, following the SNOMED-CT taxonomy--a widely used knowledge graph ontology covering medical terminology. SM3-Text-to-Query provides data representations for relational databases (PostgreSQL), document stores (MongoDB), and graph databases (Neo4j and GraphDB (RDF)), allowing the evaluation across four popular query languages, namely SQL, MQL, Cypher, and SPARQL. We systematically and manually develop 408 template questions, which we augment to construct a benchmark of 10K diverse natural language question/query pairs for these four query languages (40K pairs overall). On our dataset, we evaluate several common in-context-learning (ICL) approaches for a set of representative closed and open-source LLMs.


MedJourney: Benchmark and Evaluation of Large Language Models over Patient Clinical Journey

Neural Information Processing Systems

Large language models (LLMs) have demonstrated remarkable capabilities in language understanding and generation, leading to their widespread adoption across various fields. Among these, the medical field is particularly well-suited for LLM applications, as many medical tasks can be enhanced by LLMs. Despite the existence of benchmarks for evaluating LLMs in medical question-answering and exams, there remains a notable gap in assessing LLMs' performance in supporting patients throughout their entire hospital visit journey in real-world clinical practice. In this paper, we address this gap by dividing a typical patient's clinical journey into four stages: planning, access, delivery and ongoing care. For each stage, we introduce multiple tasks and corresponding datasets, resulting in a comprehensive benchmark comprising 12 datasets, of which five are newly introduced, and seven are constructed from existing datasets. This proposed benchmark facilitates a thorough evaluation of LLMs' effectiveness across the entire patient journey, providing insights into their practical application in clinical settings. Additionally, we evaluate three categories of LLMs against this benchmark: 1) proprietary LLM services such as GPT-4; 2) public LLMs like QWen; and 3) specialized medical LLMs, like HuatuoGPT2. Through this extensive evaluation, we aim to provide a better understanding of LLMs' performance in the medical domain, ultimately contributing to their more effective deployment in healthcare settings.


Mind the Gap: A Causal Perspective on Bias Amplification in Prediction & Decision-Making

Neural Information Processing Systems

As society increasingly relies on AI-based tools for decision-making in socially sensitive domains, investigating fairness and equity of such automated systems has become a critical field of inquiry. Most of the literature in fair machine learning focuses on defining and achieving fairness criteria in the context of prediction, while not explicitly focusing on how these predictions may be used later on in the pipeline. For instance, if commonly used criteria, such as independence or sufficiency, are satisfied for a prediction score S used for binary classification, they need not be satisfied after an application of a simple thresholding operation on S (as commonly used in practice). In this paper, we take an important step to address this issue in numerous statistical and causal notions of fairness. We introduce the notion of a margin complement, which measures how much a prediction score S changes due to a thresholding operation.


Long-form factuality in large language models

Neural Information Processing Systems

Large language models (LLMs) often generate content that contains factual errors when responding to fact-seeking prompts on open-ended topics. To benchmark a model's long-form factuality in open domains, we first use GPT-4 to generate LongFact, a prompt set comprising thousands of questions spanning 38 topics. We then propose that LLM agents can be used as automated evaluators for longform factuality through a method which we call Search-Augmented Factuality Evaluator (SAFE). SAFE utilizes an LLM to break down a long-form response into a set of individual facts and to evaluate the accuracy of each fact using a multi-step reasoning process comprising sending search queries to Google Search and determining whether a fact is supported by the search results. Furthermore, we propose extending F1 score as an aggregated metric for long-form factuality.


MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making Yubin Kim 1 Chanwoo Park

Neural Information Processing Systems

Foundation models are becoming valuable tools in medicine. Yet despite their promise, the best way to leverage Large Language Models (LLMs) in complex medical tasks remains an open question. We introduce a novel multi-agent framework, named Medical Decision-making Agents (MDAgents) that helps to address this gap by automatically assigning a collaboration structure to a team of LLMs. The assigned solo or group collaboration structure is tailored to the medical task at hand, a simple emulation inspired by the way real-world medical decision-making processes are adapted to tasks of different complexities. We evaluate our framework and baseline methods using state-of-the-art LLMs across a suite of real-world medical knowledge and medical diagnosis benchmarks, including a comparison of LLMs' medical complexity classification against human physicians


A Benchmark Task Details

Neural Information Processing Systems

The risk for lead exposure is disproportionately higher for children who are poor, non-Hispanic black, living in large metropolitan areas, or living in older housing. The CDC sets a national standard for blood lead levels in children. This value was established in 2012 to be 3.5 micrograms per decileter (ยตg/dL) of blood.


FuseMoE: Mixture-of-Experts Transformers for Fleximodal Fusion

Neural Information Processing Systems

As machine learning models in critical fields increasingly grapple with multimodal data, they face the dual challenges of handling a wide array of modalities, often incomplete due to missing elements, and the temporal irregularity and sparsity of collected samples. Successfully leveraging this complex data, while overcoming the scarcity of high-quality training samples, is key to improving these models' predictive performance. We introduce "FuseMoE", a mixture-of-experts framework incorporated with an innovative gating function. Designed to integrate a diverse number of modalities, FuseMoE is effective in managing scenarios with missing modalities and irregularly sampled data trajectories. Theoretically, our unique gating function contributes to enhanced convergence rates, leading to better performance in multiple downstream tasks. The practical utility of FuseMoE in the real world is validated by a diverse set of challenging prediction tasks.


Trenton Chang 1 Lindsay Warrenburg

Neural Information Processing Systems

In many settings, machine learning models may be used to inform decisions that impact individuals or entities who interact with the model. Such entities, or agents, may game model decisions by manipulating their inputs to the model to obtain better outcomes and maximize some utility. We consider a multi-agent setting where the goal is to identify the "worst offenders:" agents that are gaming most aggressively. However, identifying such agents is difficult without being able to evaluate their utility function. Thus, we introduce a framework featuring a gaming deterrence parameter, a scalar that quantifies an agent's (un)willingness to game. We show that this gaming parameter is only partially identifiable. By recasting the problem as a causal effect estimation problem where different agents represent different "treatments," we prove that a ranking of all agents by their gaming parameters is identifiable. We present empirical results in a synthetic data study validating the usage of causal effect estimation for gaming detection and show in a case study of diagnosis coding behavior in the U.S. that our approach highlights features associated with gaming.