Goto

Collaborating Authors

 Regional Government


Handwritten Digit Recognition with a Back-Propagation Network

Neural Information Processing Systems

We present an application of back-propagation networks to handwritten digit recognition. Minimal preprocessing of the data was required, but architecture of the network was highly constrained and specifically designed for the task. The input of the network consists of normalized images of isolated digits. The method has 1 % error rate and about a 9% reject rate on zipcode digits provided by the U.S. Postal Service. 1 INTRODUCTION The main point of this paper is to show that large back-propagation (BP) networks can be applied to real image-recognition problems without a large, complex preprocessing stage requiring detailed engineering. Unlike most previous work on the subject (Denker et al., 1989), the learning network is directly fed with images, rather than feature vectors, thus demonstrating the ability of BP networks to deal with large amounts of low level information. Previous work performed on simple digit images (Le Cun, 1989) showed that the architecture of the network strongly influences the network's generalization ability. Good generalization can only be obtained by designing a network architecture that contains a certain amount of a priori knowledge about the problem. The basic design principle is to minimize the number of free parameters that must be determined by the learning algorithm, without overly reducing the computational power of the network.


Unsupervised Learning in Neurodynamics Using the Phase Velocity Field Approach

Neural Information Processing Systems

A new concept for unsupervised learning based upon examples introduced to the neural network is proposed. Each example is considered as an interpolation node of the velocity field in the phase space. The velocities at these nodes are selected such that all the streamlines converge to an attracting set imbedded in the subspace occupied by the cluster of examples. The synaptic interconnections are found from learning procedure providing selected field. The theory is illustrated by examples. This paper is devoted to development of a new concept for unsupervised learning based upon examples introduced to an artificial neural network.


AI Planning: Systems and Techniques

AI Magazine

This article reviews research in the development of plan generation systems. Our goal is to familiarize the reader with some of the important problems that have arisen in the design of planning systems and to discuss some of the many solutions that have been developed in the over 30 years of research in this area. In this article, we broadly cover the major ideas in the field of AI planning and show the direction in which some current research is going. We define some of the terms commonly used in the planning literature, describe some of the basic issues coming from the design of planning systems, and survey results in the area. Because such tasks are virtually never ending, and thus, any finite document must be incomplete, we provide references to connect each idea to the appropriate literature and allow readers access to the work most relevant to their own research or applications.


Statistical Prediction with Kanerva's Sparse Distributed Memory

Neural Information Processing Systems

ABSTRACT A new viewpoint of the processing performed by Kanerva's sparse distributed memory (SDM) is presented. In conditions of near-or over-capacity, where the associative-memory behavior of the model breaks down, the processing performed by the model can be interpreted as that of a statistical predictor. Mathematical results are presented which serve as the framework for a new statistical viewpoint of sparse distributed memory and for which the standard formulation of SDM is a special case. This viewpoint suggests possible enhancements to the SDM model, including a procedure for improving the predictiveness of the system based on Holland's work with'Genetic Algorithms', and a method for improving the capacity of SDM even when used as an associative memory. OVERVIEW This work is the result of studies involving two seemingly separate topics that proved to share a common framework. The fIrst topic, statistical prediction, is the task of associating extremely large perceptual state vectors with future events.


ALVINN: An Autonomous Land Vehicle in a Neural Network

Neural Information Processing Systems

ALVINN (Autonomous Land Vehicle In a Neural Network) is a 3-layer back-propagation network designed for the task of road following. Currently ALVINN takes images from a camera and a laser range finder as input and produces as output the direction the vehicle should travel in order to follow the road. Training has been conducted using simulated road images. Successful tests on the Carnegie Mellon autonomous navigation test vehicle indicate that the network can effectively follow real roads under certain field conditions. The representation developed to perfOIm the task differs dramatically when the networlc is trained under various conditions, suggesting the possibility of a novel adaptive autonomous navigation system capable of tailoring its processing to the conditions at hand.


Neural Network Recognizer for Hand-Written Zip Code Digits

Neural Information Processing Systems

This paper describes the construction of a system that recognizes hand-printed digits, using a combination of classical techniques and neural-net methods. The system has been trained and tested on real-world data, derived from zip codes seen on actual U.S. Mail. The system rejects a small percentage of the examples as unclassifiable, and achieves a very low error rate on the remaining examples. The system compares favorably with other state-of-the art recognizers. While some of the methods are specific to this task, it is hoped that many of the techniques will be applicable to a wide range of recognition tasks.


Neural Network Recognizer for Hand-Written Zip Code Digits

Neural Information Processing Systems

This paper describes the construction of a system that recognizes hand-printed digits, using a combination of classical techniques and neural-net methods. The system has been trained and tested on real-world data, derived from zip codes seen on actual U.S. Mail. The system rejects a small percentage of the examples as unclassifiable, and achieves a very low error rate on the remaining examples. The system compares favorably with other state-of-the art recognizers. While some of the methods are specific to this task, it is hoped that many of the techniques will be applicable to a wide range of recognition tasks.


Neural Network Recognizer for Hand-Written Zip Code Digits

Neural Information Processing Systems

This paper describes the construction of a system that recognizes hand-printed digits, using a combination of classical techniques and neural-net methods. The system has been trained and tested on real-world data, derived from zip codes seen on actual U.S. Mail. The system rejects a small percentage of the examples as unclassifiable, and achieves a very low error rate on the remaining examples. The system compares favorably with other state-of-the art recognizers. While some of the methods are specific to this task, it is hoped that many of the techniques will be applicable to a wide range of recognition tasks.


Statistical Prediction with Kanerva's Sparse Distributed Memory

Neural Information Processing Systems

David Rogers Research Institute for Advanced Computer Science MS 230-5, NASA Ames Research Center Moffett Field, CA 94035 ABSTRACT A new viewpoint of the processing performed by Kanerva's sparse distributed memory (SDM) is presented. In conditions of near-or over-capacity, where the associative-memory behavior of the model breaksdown, the processing performed by the model can be interpreted asthat of a statistical predictor. Mathematical results are presented which serve as the framework for a new statistical viewpoint ofsparse distributed memory and for which the standard formulation ofSDM is a special case. This viewpoint suggests possible enhancements to the SDM model, including a procedure for improving the predictiveness of the system based on Holland's work with'Genetic Algorithms', and a method for improving the capacity of SDM even when used as an associative memory. OVERVIEW This work is the result of studies involving two seemingly separate topics that proved to share a common framework.


ALVINN: An Autonomous Land Vehicle in a Neural Network

Neural Information Processing Systems

ALVINN (Autonomous Land Vehicle In a Neural Network) is a 3-layer back-propagation network designed for the task of road following. Currently ALVINNtakes images from a camera and a laser range finder as input and produces as output the direction the vehicle should travel in order to follow the road. Training has been conducted using simulated road images. Successful tests on the Carnegie Mellon autonomous navigation test vehicle indicate that the network can effectively follow real roads under certain field conditions. The representation developed to perfOIm the task differs dramatically whenthe networlc is trained under various conditions, suggesting the possibility of a novel adaptive autonomous navigation system capable of tailoring its processing to the conditions at hand.