South Africa Government
CorpusBrain++: A Continual Generative Pre-Training Framework for Knowledge-Intensive Language Tasks
Guo, Jiafeng, Zhou, Changjiang, Zhang, Ruqing, Chen, Jiangui, de Rijke, Maarten, Fan, Yixing, Cheng, Xueqi
Knowledge-intensive language tasks (KILTs) typically require retrieving relevant documents from trustworthy corpora, e.g., Wikipedia, to produce specific answers. Very recently, a pre-trained generative retrieval model for KILTs, named CorpusBrain, was proposed and reached new state-of-the-art retrieval performance. However, most existing research on KILTs, including CorpusBrain, has predominantly focused on a static document collection, overlooking the dynamic nature of real-world scenarios, where new documents are continuously being incorporated into the source corpus. To address this gap, it is crucial to explore the capability of retrieval models to effectively handle the dynamic retrieval scenario inherent in KILTs. In this work, we first introduce the continual document learning (CDL) task for KILTs and build a novel benchmark dataset named KILT++ based on the original KILT dataset for evaluation. Then, we conduct a comprehensive study over the use of pre-trained CorpusBrain on KILT++. Unlike the promising results in the stationary scenario, CorpusBrain is prone to catastrophic forgetting in the dynamic scenario, hence hampering the retrieval performance. To alleviate this issue, we propose CorpusBrain++, a continual generative pre-training framework. Empirical results demonstrate the significant effectiveness and remarkable efficiency of CorpusBrain++ in comparison to both traditional and generative IR methods.
Preparing the Vuk'uzenzele and ZA-gov-multilingual South African multilingual corpora
Lastrucci, Richard, Dzingirai, Isheanesu, Rajab, Jenalea, Madodonga, Andani, Shingange, Matimba, Njini, Daniel, Marivate, Vukosi
This paper introduces two multilingual government themed corpora in various South African languages. The corpora were collected by gathering the South African Government newspaper (Vuk'uzenzele), as well as South African government speeches (ZA-gov-multilingual), that are translated into all 11 South African official languages. The corpora can be used for a myriad of downstream NLP tasks. The corpora were created to allow researchers to study the language used in South African government publications, with a focus on understanding how South African government officials communicate with their constituents. In this paper we highlight the process of gathering, cleaning and making available the corpora. We create parallel sentence corpora for Neural Machine Translation (NMT) tasks using Language-Agnostic Sentence Representations (LASER) embeddings. With these aligned sentences we then provide NMT benchmarks for 9 indigenous languages by fine-tuning a massively multilingual pre-trained language model.