Goto

Collaborating Authors

 Geothermal System for Power Generation


Designing Closed-Loop Models for Task Allocation

arXiv.org Artificial Intelligence

Automatically assigning tasks to people is challenging because human performance can vary across tasks for many reasons. This challenge is further compounded in real-life settings in which no oracle exists to assess the quality of human decisions and task assignments made. Instead, we find ourselves in a "closed" decision-making loop in which the same fallible human decisions we rely on in practice must also be used to guide task allocation. How can imperfect and potentially biased human decisions train an accurate allocation model? Our key insight is to exploit weak prior information on human-task similarity to bootstrap model training. We show that the use of such a weak prior can improve task allocation accuracy, even when human decision-makers are fallible and biased. We present both theoretical analysis and empirical evaluation over synthetic data and a social media toxicity detection task. Results demonstrate the efficacy of our approach.


Closed-Loop Magnetic Manipulation for Robotic Transesophageal Echocardiography

arXiv.org Artificial Intelligence

This paper presents a closed-loop magnetic manipulation framework for robotic transesophageal echocardiography (TEE) acquisitions. Different from previous work on intracorporeal robotic ultrasound acquisitions that focus on continuum robot control, we first investigate the use of magnetic control methods for more direct, intuitive, and accurate manipulation of the distal tip of the probe. We modify a standard TEE probe by attaching a permanent magnet and an inertial measurement unit sensor to the probe tip and replacing the flexible gastroscope with a soft tether containing only wires for transmitting ultrasound signals, and show that 6-DOF localization and 5-DOF closed-loop control of the probe can be achieved with an external permanent magnet based on the fusion of internal inertial measurement and external magnetic field sensing data. The proposed method does not require complex structures or motions of the actuator and the probe compared with existing magnetic manipulation methods. We have conducted extensive experiments to validate the effectiveness of the framework in terms of localization accuracy, update rate, workspace size, and tracking accuracy. In addition, our results obtained on a realistic cardiac tissue-mimicking phantom show that the proposed framework is applicable in real conditions and can generally meet the requirements for tele-operated TEE acquisitions.


A machine learning approach to the prediction of heat-transfer coefficients in micro-channels

arXiv.org Artificial Intelligence

The accurate prediction of the two-phase heat transfer coefficient (HTC) as a function of working fluids, channel geometries and process conditions is key to the optimal design and operation of compact heat exchangers. Advances in artificial intelligence research have recently boosted the application of machine learning (ML) algorithms to obtain data-driven surrogate models for the HTC. For most supervised learning algorithms, the task is that of a nonlinear regression problem. Despite the fact that these models have been proven capable of outperforming traditional empirical correlations, they have key limitations such as overfitting the data, the lack of uncertainty estimation, and interpretability of the results. To address these limitations, in this paper, we use a multi-output Gaussian process regression (GPR) to estimate the HTC in microchannels as a function of the mass flow rate, heat flux, system pressure and channel diameter and length. The model is trained using the Brunel Two-Phase Flow database of high-fidelity experimental data. The advantages of GPR are data efficiency, the small number of hyperparameters to be trained (typically of the same order of the number of input dimensions), and the automatic trade-off between data fit and model complexity guaranteed by the maximization of the marginal likelihood (Bayesian approach). Our paper proposes research directions to improve the performance of the GPR-based model in extrapolation.


Towards Improving Operation Economics: A Bilevel MIP-Based Closed-Loop Predict-and-Optimize Framework for Prescribing Unit Commitment

arXiv.org Artificial Intelligence

Generally, system operators conduct the economic operation of power systems in an open-loop predict-then-optimize process: the renewable energy source (RES) availability and system reserve requirements are first predicted; given the predictions, system operators solve optimization models such as unit commitment (UC) to determine the economical operation plans accordingly. However, such an open-loop process could essentially compromise the operation economics because its predictors myopically seek to improve the immediate statistical prediction errors instead of the ultimate operation cost. To this end, this paper presents a closed-loop predict-and-optimize framework, offering a prescriptive UC to improve the operation economics. First, a bilevel mixed-integer programming model is leveraged to train cost-oriented predictors tailored for optimal system operations: the upper level trains the RES and reserve predictors based on their induced operation cost; the lower level, with given predictions, mimics the system operation process and feeds the induced operation cost back to the upper level. Furthermore, the embeddability of the trained predictors grants a prescriptive UC model, which simultaneously provides RES-reserve predictions and UC decisions with enhanced operation economics. Finally, numerical case studies using real-world data illustrate the potential economic and practical advantages of prescriptive UC over deterministic, robust, and stochastic UC models.


NIMS-OS: An automation software to implement a closed loop between artificial intelligence and robotic experiments in materials science

arXiv.org Artificial Intelligence

NIMS-OS (NIMS Orchestration System) is a Python library created to realize a closed loop of robotic experiments and artificial intelligence (AI) without human intervention for automated materials exploration. It uses various combinations of modules to operate autonomously. Each module acts as an AI for materials exploration or a controller for a robotic experiments. As AI techniques, Bayesian optimization (PHYSBO), boundless objective-free exploration (BLOX), phase diagram construction (PDC), and random exploration (RE) methods can be used. Moreover, a system called NIMS automated robotic electrochemical experiments (NAREE) is available as a set of robotic experimental equipment. Visualization tools for the results are also included, which allows users to check the optimization results in real time. Newly created modules for AI and robotic experiments can be added easily to extend the functionality of the system. In addition, we developed a GUI application to control NIMS-OS.To demonstrate the operation of NIMS-OS, we consider an automated exploration for new electrolytes. NIMS-OS is available at https://github.com/nimsos-dev/nimsos.


Open- and Closed-Loop Neural Network Verification using Polynomial Zonotopes

arXiv.org Artificial Intelligence

We present a novel approach to efficiently compute tight non-convex enclosures of the image through neural networks with ReLU, sigmoid, or hyperbolic tangent activation functions. In particular, we abstract the input-output relation of each neuron by a polynomial approximation, which is evaluated in a set-based manner using polynomial zonotopes. While our approach can also can be beneficial for open-loop neural network verification, our main application is reachability analysis of neural network controlled systems, where polynomial zonotopes are able to capture the non-convexity caused by the neural network as well as the system dynamics. This results in a superior performance compared to other methods, as we demonstrate on various benchmarks. Keywords: Neural network verification neural network controlled systems reachability analysis polynomial zonotopes formal verification.


Reinforcement Learning for Mixed Open-loop and Closed-loop Control

Neural Information Processing Systems

Closed-loop control relies on sensory feedback that is usually as(cid:173) sumed to be free . But if sensing incurs a cost, it may be cost(cid:173) effective to take sequences of actions in open-loop mode. We de(cid:173) scribe a reinforcement learning algorithm that learns to combine open-loop and closed-loop control when sensing incurs a cost. Al(cid:173) though we assume reliable sensors, use of open-loop control means that actions must sometimes be taken when the current state of the controlled system is uncertain. This is a special case of the hidden-state problem in reinforcement learning, and to cope, our algorithm relies on short-term memory.


Closed-Loop Koopman Operator Approximation

arXiv.org Artificial Intelligence

The Koopman operator allows a nonlinear system to be rewritten as an infinite-dimensional linear system by viewing it in terms of an infinite set of lifting functions instead of a state vector. The main feature of this representation is its linearity, making it compatible with existing linear systems theory. A finite-dimensional approximation of the Koopman operator can be identified from experimental data by choosing a finite subset of lifting functions, applying it to the data, and solving a least squares problem in the lifted space. Existing Koopman operator approximation methods are designed to identify open-loop systems. However, it is impractical or impossible to run experiments on some systems without a feedback controller. Unfortunately, the introduction of feedback control results in correlations between the system's input and output, making some plant dynamics difficult to identify if the controller is neglected. This paper addresses this limitation by introducing a method to identify a Koopman model of the closed-loop system, and then extract a Koopman model of the plant given knowledge of the controller. This is accomplished by leveraging the linearity of the Koopman representation of the system. The proposed approach widens the applicability of Koopman operator identification methods to a broader class of systems. The effectiveness of the proposed closed-loop Koopman operator approximation method is demonstrated experimentally using a Harmonic Drive gearbox exhibiting nonlinear vibrations.


Data-Driven Predictive Control Towards Multi-Agent Motion Planning With Non-Parametric Closed-Loop Behavior Learning

arXiv.org Artificial Intelligence

In many specific scenarios, accurate and effective system identification is a commonly encountered challenge in the model predictive control (MPC) formulation. As a consequence, the overall system performance could be significantly weakened in outcome when the traditional MPC algorithm is adopted under those circumstances when such accuracy is lacking. This paper investigates a non-parametric closed-loop behavior learning method for multi-agent motion planning, which underpins a data-driven predictive control framework. Utilizing an innovative methodology with closed-loop input/output measurements of the unknown system, the behavior of the system is learned based on the collected dataset, and thus the constructed non-parametric predictive model can be used to determine the optimal control actions. This non-parametric predictive control framework alleviates the heavy computational burden commonly encountered in the optimization procedures typically in alternate methodologies requiring open-loop input/output measurement data collection and parametric system identification. The proposed data-driven approach is also shown to preserve good robustness properties. Finally, a multi-UAV system is used to demonstrate the highly effective outcome of this promising development.


Offline Learning of Closed-Loop Deep Brain Stimulation Controllers for Parkinson Disease Treatment

arXiv.org Artificial Intelligence

Deep brain stimulation (DBS) has shown great promise toward treating motor symptoms caused by Parkinson's disease (PD), by delivering electrical pulses to the Basal Ganglia (BG) region of the brain. However, DBS devices approved by the U.S. Food and Drug Administration (FDA) can only deliver continuous DBS (cDBS) stimuli at a fixed amplitude; this energy inefficient operation reduces battery lifetime of the device, cannot adapt treatment dynamically for activity, and may cause significant side-effects (e.g., gait impairment). In this work, we introduce an offline reinforcement learning (RL) framework, allowing the use of past clinical data to train an RL policy to adjust the stimulation amplitude in real time, with the goal of reducing energy use while maintaining the same level of treatment (i.e., control) efficacy as cDBS. Moreover, clinical protocols require the safety and performance of such RL controllers to be demonstrated ahead of deployments in patients. Thus, we also introduce an offline policy evaluation (OPE) method to estimate the performance of RL policies using historical data, before deploying them on patients. We evaluated our framework on four PD patients equipped with the RC+S DBS system, employing the RL controllers during monthly clinical visits, with the overall control efficacy evaluated by severity of symptoms (i.e., bradykinesia and tremor), changes in PD biomakers (i.e., local field potentials), and patient ratings. The results from clinical experiments show that our RL-based controller maintains the same level of control efficacy as cDBS, but with significantly reduced stimulation energy. Further, the OPE method is shown effective in accurately estimating and ranking the expected returns of RL controllers.