Geothermal System for Power Generation
Enabling BIM-Driven Robotic Construction Workflows with Closed-Loop Digital Twins
Wang, Xi, Yu, Hongrui, McGee, Wes, Menassa, Carol C., Kamat, Vineet R.
The introduction of assistive construction robots can significantly alleviate physical demands on construction workers. Leveraging a Building Information Model (BIM) offers a natural and promising approach to driving a robotic construction workflow. However, because of uncertainties inherent in construction sites, such as discrepancies between the as-designed and as-built components, robots cannot solely rely on a BIM to plan and perform field construction work. Human workers are adept at improvising alternative plans with their creativity and experience and thus can assist robots in overcoming uncertainties and performing construction work successfully. In such scenarios, it is critical to continuously update the BIM as work processes unfold so that it includes as-built information for the ensuing construction and maintenance tasks. This research introduces an interactive closed-loop digital twin framework that integrates a BIM into human-robot collaborative construction workflows. The robot's functions are primarily driven by the BIM, but it adaptively adjusts its plans based on actual site conditions, while the human co-worker oversees and supervises the process. When necessary, the human co-worker intervenes in the robot's plan by changing the task sequence or workspace geometry or requesting a new motion plan to help the robot overcome the encountered uncertainties. Experiments involving block pick-and-place tasks are carried out to verify system performance using an industrial robotic arm in a research laboratory setting that mimics a construction site. In addition, a drywall installation case study is conducted to validate the system. Integrating the flexibility of human workers and the autonomy and accuracy afforded by BIMs, the proposed framework offers significant promise of increasing the robustness of construction robots in the performance of field construction work.
Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust Closed-Loop Control
Tumma, Neehal, Lechner, Mathias, Loo, Noel, Hasani, Ramin, Rus, Daniela
Developing autonomous agents that can interact with changing environments is an open challenge in machine learning. Robustness is particularly important in these settings as agents are often fit offline on expert demonstrations but deployed online where they must generalize to the closed feedback loop within the environment. In this work, we explore the application of recurrent neural networks to tasks of this nature and understand how a parameterization of their recurrent connectivity influences robustness in closed-loop settings. Specifically, we represent the recurrent connectivity as a function of rank and sparsity and show both theoretically and empirically that modulating these two variables has desirable effects on network dynamics. The proposed low-rank, sparse connectivity induces an interpretable prior on the network that proves to be most amenable for a class of models known as closed-form continuous-time neural networks (CfCs). We find that CfCs with fewer parameters can outperform their full-rank, fully-connected counterparts in the online setting under distribution shift. This yields memory-efficient and robust agents while opening a new perspective on how we can modulate network dynamics through connectivity.
Text Attribute Control via Closed-Loop Disentanglement
Changing an attribute of a text without changing the content usually requires to first disentangle the text into irrelevant attributes and content representations. After that, in the inference phase, the representation of one attribute is tuned to a different value, expecting that the corresponding attribute of the text can also be changed accordingly. The usual way of disentanglement is to add some constraints on the latent space of an encoder-decoder architecture, including adversarial-based constraints and mutual-information-based constraints. However, the previous semi-supervised processes of attribute change are usually not enough to guarantee the success of attribute change and content preservation. In this paper, we propose a novel approach to achieve a robust control of attributes while enhancing content preservation. In this approach, we use a semi-supervised contrastive learning method to encourage the disentanglement of attributes in latent spaces. Differently from previous works, we re-disentangle the reconstructed sentence and compare the re-disentangled latent space with the original latent space, which makes a closed-loop disentanglement process. This also helps content preservation. In addition, the contrastive learning method is also able to replace the role of minimizing mutual information and adversarial training in the disentanglement process, which alleviates the computation cost. We conducted experiments on three text datasets, including the Yelp Service review dataset, the Amazon Product review dataset, and the GoEmotions dataset. The experimental results show the effectiveness of our model.
Learning Free Terminal Time Optimal Closed-loop Control of Manipulators
Hu, Wei, Zhao, Yue, E, Weinan, Han, Jiequn, Long, Jihao
This paper presents a novel approach to learning free terminal time closed-loop control for robotic manipulation tasks, enabling dynamic adjustment of task duration and control inputs to enhance performance. We extend the supervised learning approach, namely solving selected optimal open-loop problems and utilizing them as training data for a policy network, to the free terminal time scenario. Three main challenges are addressed in this extension. First, we introduce a marching scheme that enhances the solution quality and increases the success rate of the open-loop solver by gradually refining time discretization. Second, we extend the QRnet in Nakamura-Zimmerer et al. (2021b) to the free terminal time setting to address discontinuity and improve stability at the terminal state. Third, we present a more automated version of the initial value problem (IVP) enhanced sampling method from previous work (Zhang et al., 2022) to adaptively update the training dataset, significantly improving its quality. By integrating these techniques, we develop a closed-loop policy that operates effectively over a broad domain with varying optimal time durations, achieving near globally optimal total costs.
Model Checking for Closed-Loop Robot Reactive Planning
Chandler, Christopher, Porr, Bernd, Miller, Alice, Lafratta, Giulia
In this paper, we show how model checking can be used to create multi-step plans for a differential drive wheeled robot so that it can avoid immediate danger. Using a small, purpose built model checking algorithm in situ we generate plans in real-time in a way that reflects the egocentric reactive response of simple biological agents. Our approach is based on chaining temporary control systems which are spawned to eliminate disturbances in the local environment that disrupt an autonomous agent from its preferred action (or resting state). The method involves a novel discretization of 2D LiDAR data which is sensitive to bounded stochastic variations in the immediate environment. We operationalise multi-step planning using invariant checking by forward depth-first search, using a cul-de-sac scenario as a first test case. Our results demonstrate that model checking can be used to plan efficient trajectories for local obstacle avoidance, improving on the performance of a reactive agent which can only plan one step. We achieve this in near real-time using no pre-computed data. While our method has limitations, we believe our approach shows promise as an avenue for the development of safe, reliable and transparent trajectory planning in the context of autonomous vehicles.
Near-optimal Closed-loop Method via Lyapunov Damping for Convex Optimization
Maier, Severin, Castera, Camille, Ochs, Peter
We introduce an autonomous system with closed-loop damping for first-order convex optimization. While, to this day, optimal rates of convergence are only achieved by non-autonomous methods via open-loop damping (e.g., Nesterov's algorithm), we show that our system is the first one featuring a closed-loop damping while exhibiting a rate arbitrarily close to the optimal one. We do so by coupling the damping and the speed of convergence of the system via a well-chosen Lyapunov function. We then derive a practical first-order algorithm called LYDIA by discretizing our system, and present numerical experiments supporting our theoretical findings.
Learning Over Contracting and Lipschitz Closed-Loops for Partially-Observed Nonlinear Systems (Extended Version)
Barbara, Nicholas H., Wang, Ruigang, Manchester, Ian R.
This paper presents a policy parameterization for learning-based control on nonlinear, partially-observed dynamical systems. The parameterization is based on a nonlinear version of the Youla parameterization and the recently proposed Recurrent Equilibrium Network (REN) class of models. We prove that the resulting Youla-REN parameterization automatically satisfies stability (contraction) and user-tunable robustness (Lipschitz) conditions on the closed-loop system. This means it can be used for safe learning-based control with no additional constraints or projections required to enforce stability or robustness. We test the new policy class in simulation on two reinforcement learning tasks: 1) magnetic suspension, and 2) inverting a rotary-arm pendulum. We find that the Youla-REN performs similarly to existing learning-based and optimal control methods while also ensuring stability and exhibiting improved robustness to adversarial disturbances.
Adv3D: Generating Safety-Critical 3D Objects through Closed-Loop Simulation
Sarva, Jay, Wang, Jingkang, Tu, James, Xiong, Yuwen, Manivasagam, Sivabalan, Urtasun, Raquel
Self-driving vehicles (SDVs) must be rigorously tested on a wide range of scenarios to ensure safe deployment. The industry typically relies on closed-loop simulation to evaluate how the SDV interacts on a corpus of synthetic and real scenarios and verify it performs properly. However, they primarily only test the system's motion planning module, and only consider behavior variations. It is key to evaluate the full autonomy system in closed-loop, and to understand how variations in sensor data based on scene appearance, such as the shape of actors, affect system performance. In this paper, we propose a framework, Adv3D, that takes real world scenarios and performs closed-loop sensor simulation to evaluate autonomy performance, and finds vehicle shapes that make the scenario more challenging, resulting in autonomy failures and uncomfortable SDV maneuvers. Unlike prior works that add contrived adversarial shapes to vehicle roof-tops or roadside to harm perception only, we optimize a low-dimensional shape representation to modify the vehicle shape itself in a realistic manner to degrade autonomy performance (e.g., perception, prediction, and motion planning). Moreover, we find that the shape variations found with Adv3D optimized in closed-loop are much more effective than those in open-loop, demonstrating the importance of finding scene appearance variations that affect autonomy in the interactive setting.
Learning Realistic Traffic Agents in Closed-loop
Zhang, Chris, Tu, James, Zhang, Lunjun, Wong, Kelvin, Suo, Simon, Urtasun, Raquel
Realistic traffic simulation is crucial for developing self-driving software in a safe and scalable manner prior to real-world deployment. Typically, imitation learning (IL) is used to learn human-like traffic agents directly from real-world observations collected offline, but without explicit specification of traffic rules, agents trained from IL alone frequently display unrealistic infractions like collisions and driving off the road. This problem is exacerbated in out-of-distribution and long-tail scenarios. On the other hand, reinforcement learning (RL) can train traffic agents to avoid infractions, but using RL alone results in unhuman-like driving behaviors. We propose Reinforcing Traffic Rules (RTR), a holistic closed-loop learning objective to match expert demonstrations under a traffic compliance constraint, which naturally gives rise to a joint IL + RL approach, obtaining the best of both worlds. Our method learns in closed-loop simulations of both nominal scenarios from real-world datasets as well as procedurally generated long-tail scenarios. Our experiments show that RTR learns more realistic and generalizable traffic simulation policies, achieving significantly better tradeoffs between human-like driving and traffic compliance in both nominal and long-tail scenarios. Moreover, when used as a data generation tool for training prediction models, our learned traffic policy leads to considerably improved downstream prediction metrics compared to baseline traffic agents. For more information, visit the project website: https://waabi.ai/rtr
VFAS-Grasp: Closed Loop Grasping with Visual Feedback and Adaptive Sampling
Piacenza, Pedro, Yuan, Jiacheng, Huh, Jinwook, Isler, Volkan
We consider the problem of closed-loop robotic grasping and present a novel planner which uses Visual Feedback and an uncertainty-aware Adaptive Sampling strategy (VFAS) to close the loop. At each iteration, our method VFAS-Grasp builds a set of candidate grasps by generating random perturbations of a seed grasp. The candidates are then scored using a novel metric which combines a learned grasp-quality estimator, the uncertainty in the estimate and the distance from the seed proposal to promote temporal consistency. Additionally, we present two mechanisms to improve the efficiency of our sampling strategy: We dynamically scale the sampling region size and number of samples in it based on past grasp scores. We also leverage a motion vector field estimator to shift the center of our sampling region. We demonstrate that our algorithm can run in real time (20 Hz) and is capable of improving grasp performance for static scenes by refining the initial grasp proposal. We also show that it can enable grasping of slow moving objects, such as those encountered during human to robot handover.