Advanced Geothermal System (AGS)
UniSim: A Neural Closed-Loop Sensor Simulator
Yang, Ze, Chen, Yun, Wang, Jingkang, Manivasagam, Sivabalan, Ma, Wei-Chiu, Yang, Anqi Joyce, Urtasun, Raquel
Rigorously testing autonomy systems is essential for making safe self-driving vehicles (SDV) a reality. It requires one to generate safety critical scenarios beyond what can be collected safely in the world, as many scenarios happen rarely on public roads. To accurately evaluate performance, we need to test the SDV on these scenarios in closed-loop, where the SDV and other actors interact with each other at each timestep. Previously recorded driving logs provide a rich resource to build these new scenarios from, but for closed loop evaluation, we need to modify the sensor data based on the new scene configuration and the SDV's decisions, as actors might be added or removed and the trajectories of existing actors and the SDV will differ from the original log. In this paper, we present UniSim, a neural sensor simulator that takes a single recorded log captured by a sensor-equipped vehicle and converts it into a realistic closed-loop multi-sensor simulation. UniSim builds neural feature grids to reconstruct both the static background and dynamic actors in the scene, and composites them together to simulate LiDAR and camera data at new viewpoints, with actors added or removed and at new placements. To better handle extrapolated views, we incorporate learnable priors for dynamic objects, and leverage a convolutional network to complete unseen regions. Our experiments show UniSim can simulate realistic sensor data with small domain gap on downstream tasks. With UniSim, we demonstrate closed-loop evaluation of an autonomy system on safety-critical scenarios as if it were in the real world.
PourIt!: Weakly-supervised Liquid Perception from a Single Image for Visual Closed-Loop Robotic Pouring
Lin, Haitao, Fu, Yanwei, Xue, Xiangyang
Liquid perception is critical for robotic pouring tasks. It usually requires the robust visual detection of flowing liquid. However, while recent works have shown promising results in liquid perception, they typically require labeled data for model training, a process that is both time-consuming and reliant on human labor. To this end, this paper proposes a simple yet effective framework PourIt!, to serve as a tool for robotic pouring tasks. We design a simple data collection pipeline that only needs image-level labels to reduce the reliance on tedious pixel-wise annotations. Then, a binary classification model is trained to generate Class Activation Map (CAM) that focuses on the visual difference between these two kinds of collected data, i.e., the existence of liquid drop or not. We also devise a feature contrast strategy to improve the quality of the CAM, thus entirely and tightly covering the actual liquid regions. Then, the container pose is further utilized to facilitate the 3D point cloud recovery of the detected liquid region. Finally, the liquid-to-container distance is calculated for visual closed-loop control of the physical robot. To validate the effectiveness of our proposed method, we also contribute a novel dataset for our task and name it PourIt! dataset. Extensive results on this dataset and physical Franka robot have shown the utility and effectiveness of our method in the robotic pouring tasks. Our dataset, code and pre-trained models will be available on the project page.
A Shared Control Approach Based on First-Order Dynamical Systems and Closed-Loop Variable Stiffness Control
Xue, Haotian, Michel, Youssef, Lee, Dongheui
In this paper, we present a novel learning-based shared control framework. This framework deploys first-order Dynamical Systems (DS) as motion generators providing the desired reference motion, and a Variable Stiffness Dynamical Systems (VSDS) \cite{chen2021closed} for haptic guidance. We show how to shape several features of our controller in order to achieve authority allocation, local motion refinement, in addition to the inherent ability of the controller to automatically synchronize with the human state during joint task execution. We validate our approach in a teleoperated task scenario, where we also showcase the ability of our framework to deal with situations that require updating task knowledge due to possible changes in the task scenario, or changes in the environment. Finally, we conduct a user study to compare the performance of our VSDS controller for guidance generation to two state-of-the-art controllers in a target reaching task. The result shows that our VSDS controller has the highest successful rate of task execution among all conditions. Besides, our VSDS controller helps reduce the execution time and task load significantly, and was selected as the most favorable controller by participants.
Rethinking Closed-loop Training for Autonomous Driving
Zhang, Chris, Guo, Runsheng, Zeng, Wenyuan, Xiong, Yuwen, Dai, Binbin, Hu, Rui, Ren, Mengye, Urtasun, Raquel
Recent advances in high-fidelity simulators have enabled closed-loop training of autonomous driving agents, potentially solving the distribution shift in training v.s. deployment and allowing training to be scaled both safely and cheaply. However, there is a lack of understanding of how to build effective training benchmarks for closed-loop training. In this work, we present the first empirical study which analyzes the effects of different training benchmark designs on the success of learning agents, such as how to design traffic scenarios and scale training environments. Furthermore, we show that many popular RL algorithms cannot achieve satisfactory performance in the context of autonomous driving, as they lack long-term planning and take an extremely long time to train. To address these issues, we propose trajectory value learning (TRAVL), an RL-based driving agent that performs planning with multistep look-ahead and exploits cheaply generated imagined data for efficient learning. Our experiments show that TRAVL can learn much faster and produce safer maneuvers compared to all the baselines. For more information, visit the project website: https://waabi.ai/research/travl
A Closed-Loop Bin Picking System for Entangled Wire Harnesses using Bimanual and Dynamic Manipulation
Zhang, Xinyi, Domae, Yukiyasu, Wan, Weiwei, Harada, Kensuke
This paper addresses the challenge of industrial bin picking using entangled wire harnesses. Wire harnesses are essential in manufacturing but poses challenges in automation due to their complex geometries and propensity for entanglement. Our previous work tackled this issue by proposing a quasi-static pulling motion to separate the entangled wire harnesses. However, it still lacks sufficiency and generalization to various shapes and structures. In this paper, we deploy a dual-arm robot that can grasp, extract and disentangle wire harnesses from dense clutter using dynamic manipulation. The robot can swing to dynamically discard the entangled objects and regrasp to adjust the undesirable grasp pose. To improve the robustness and accuracy of the system, we leverage a closed-loop framework that uses haptic feedback to detect entanglement in real-time and flexibly adjust system parameters. Our bin picking system achieves an overall success rate of 91.2% in the real-world experiments using two different types of long wire harnesses. It demonstrates the effectiveness of our system in handling various wire harnesses for industrial bin picking.
Designing Closed-Loop Models for Task Allocation
Keswani, Vijay, Celis, L. Elisa, Kenthapadi, Krishnaram, Lease, Matthew
Automatically assigning tasks to people is challenging because human performance can vary across tasks for many reasons. This challenge is further compounded in real-life settings in which no oracle exists to assess the quality of human decisions and task assignments made. Instead, we find ourselves in a "closed" decision-making loop in which the same fallible human decisions we rely on in practice must also be used to guide task allocation. How can imperfect and potentially biased human decisions train an accurate allocation model? Our key insight is to exploit weak prior information on human-task similarity to bootstrap model training. We show that the use of such a weak prior can improve task allocation accuracy, even when human decision-makers are fallible and biased. We present both theoretical analysis and empirical evaluation over synthetic data and a social media toxicity detection task. Results demonstrate the efficacy of our approach.
Closed-Loop Magnetic Manipulation for Robotic Transesophageal Echocardiography
Li, Keyu, Xu, Yangxin, Zhao, Ziqi, Li, Ang, Meng, Max Q. -H.
This paper presents a closed-loop magnetic manipulation framework for robotic transesophageal echocardiography (TEE) acquisitions. Different from previous work on intracorporeal robotic ultrasound acquisitions that focus on continuum robot control, we first investigate the use of magnetic control methods for more direct, intuitive, and accurate manipulation of the distal tip of the probe. We modify a standard TEE probe by attaching a permanent magnet and an inertial measurement unit sensor to the probe tip and replacing the flexible gastroscope with a soft tether containing only wires for transmitting ultrasound signals, and show that 6-DOF localization and 5-DOF closed-loop control of the probe can be achieved with an external permanent magnet based on the fusion of internal inertial measurement and external magnetic field sensing data. The proposed method does not require complex structures or motions of the actuator and the probe compared with existing magnetic manipulation methods. We have conducted extensive experiments to validate the effectiveness of the framework in terms of localization accuracy, update rate, workspace size, and tracking accuracy. In addition, our results obtained on a realistic cardiac tissue-mimicking phantom show that the proposed framework is applicable in real conditions and can generally meet the requirements for tele-operated TEE acquisitions.
Towards Improving Operation Economics: A Bilevel MIP-Based Closed-Loop Predict-and-Optimize Framework for Prescribing Unit Commitment
Chen, Xianbang, Liu, Yikui, Wu, Lei
Generally, system operators conduct the economic operation of power systems in an open-loop predict-then-optimize process: the renewable energy source (RES) availability and system reserve requirements are first predicted; given the predictions, system operators solve optimization models such as unit commitment (UC) to determine the economical operation plans accordingly. However, such an open-loop process could essentially compromise the operation economics because its predictors myopically seek to improve the immediate statistical prediction errors instead of the ultimate operation cost. To this end, this paper presents a closed-loop predict-and-optimize framework, offering a prescriptive UC to improve the operation economics. First, a bilevel mixed-integer programming model is leveraged to train cost-oriented predictors tailored for optimal system operations: the upper level trains the RES and reserve predictors based on their induced operation cost; the lower level, with given predictions, mimics the system operation process and feeds the induced operation cost back to the upper level. Furthermore, the embeddability of the trained predictors grants a prescriptive UC model, which simultaneously provides RES-reserve predictions and UC decisions with enhanced operation economics. Finally, numerical case studies using real-world data illustrate the potential economic and practical advantages of prescriptive UC over deterministic, robust, and stochastic UC models.
NIMS-OS: An automation software to implement a closed loop between artificial intelligence and robotic experiments in materials science
Tamura, Ryo, Tsuda, Koji, Matsuda, Shoichi
NIMS-OS (NIMS Orchestration System) is a Python library created to realize a closed loop of robotic experiments and artificial intelligence (AI) without human intervention for automated materials exploration. It uses various combinations of modules to operate autonomously. Each module acts as an AI for materials exploration or a controller for a robotic experiments. As AI techniques, Bayesian optimization (PHYSBO), boundless objective-free exploration (BLOX), phase diagram construction (PDC), and random exploration (RE) methods can be used. Moreover, a system called NIMS automated robotic electrochemical experiments (NAREE) is available as a set of robotic experimental equipment. Visualization tools for the results are also included, which allows users to check the optimization results in real time. Newly created modules for AI and robotic experiments can be added easily to extend the functionality of the system. In addition, we developed a GUI application to control NIMS-OS.To demonstrate the operation of NIMS-OS, we consider an automated exploration for new electrolytes. NIMS-OS is available at https://github.com/nimsos-dev/nimsos.
Open- and Closed-Loop Neural Network Verification using Polynomial Zonotopes
Kochdumper, Niklas, Schilling, Christian, Althoff, Matthias, Bak, Stanley
We present a novel approach to efficiently compute tight non-convex enclosures of the image through neural networks with ReLU, sigmoid, or hyperbolic tangent activation functions. In particular, we abstract the input-output relation of each neuron by a polynomial approximation, which is evaluated in a set-based manner using polynomial zonotopes. While our approach can also can be beneficial for open-loop neural network verification, our main application is reachability analysis of neural network controlled systems, where polynomial zonotopes are able to capture the non-convexity caused by the neural network as well as the system dynamics. This results in a superior performance compared to other methods, as we demonstrate on various benchmarks. Keywords: Neural network verification neural network controlled systems reachability analysis polynomial zonotopes formal verification.