Advanced Geothermal System (AGS)
Closed-Loop GAN for continual Learning
Sequential learning of tasks using gradient descent leads to an unremitting decline in the accuracy of tasks for which training data is no longer available, termed catastrophic forgetting. Generative models have been explored as a means to approximate the distribution of old tasks and bypass storage of real data. Here we propose a cumulative closed-loop generator and embedded classifier using an AC-GAN architecture provided with external regularization by a small buffer. We evaluate incremental learning using a notoriously hard paradigm, single headed learning, in which each task is a disjoint subset of classes in the overall dataset, and performance is evaluated on all previous classes. First, we show that the variability contained in a small percentage of a dataset (memory buffer) accounts for a significant portion of the reported accuracy, both in multi-task and continual learning settings. Second, we show that using a generator to continuously output new images while training provides an up-sampling of the buffer, which prevents catastrophic forgetting and yields superior performance when compared to a fixed buffer. We achieve an average accuracy for all classes of 92.26% in MNIST and 76.15% in FASHION-MNIST after 5 tasks using GAN sampling with a buffer of only 0.17% of the entire dataset size. We compare to a network with regularization (EWC) which shows a deteriorated average performance of 29.19% (MNIST) and 26.5% (FASHION). The baseline of no regularization (plain gradient descent) performs at 99.84% (MNIST) and 99.79% (FASHION) for the last task, but below 3% for all previous tasks. Our method has very low long-term memory cost, the buffer, as well as negligible intermediate memory storage.
Distributed dynamic modeling and monitoring for large-scale industrial processes under closed-loop control
Li, Wenqing, Zhao, Chunhui, Huang, Biao
For large-scale industrial processes under closed-loop control, process dynamics directly resulting from control action are typical characteristics and may show different behaviors between real faults and normal changes of operating conditions. However, conventional distributed monitoring approaches do not consider the closed-loop control mechanism and only explore static characteristics, which thus are incapable of distinguishing between real process faults and nominal changes of operating conditions, leading to unnecessary alarms. In this regard, this paper proposes a distributed monitoring method for closed-loop industrial processes by concurrently exploring static and dynamic characteristics. First, the large-scale closed-loop process is decomposed into several subsystems by developing a sparse slow feature analysis (SSFA) algorithm which capture changes of both static and dynamic information. Second, distributed models are developed to separately capture static and dynamic characteristics from the local and global aspects. Based on the distributed monitoring system, a two-level monitoring strategy is proposed to check different influences on process characteristics resulting from changes of the operating conditions and control action, and thus the two changes can be well distinguished from each other. Case studies are conducted based on both benchmark data and real industrial process data to illustrate the effectiveness of the proposed method.
Closed-loop Bayesian Semantic Data Fusion for Collaborative Human-Autonomy Target Search
Burks, Luke, Loefgren, Ian, Barbier, Luke, Muesing, Jeremy, McGinley, Jamison, Vunnam, Sousheel, Ahmed, Nisar
In search applications, autonomous unmanned vehicles must be able to efficiently reacquire and localize mobile targets that can remain out of view for long periods of time in large spaces. As such, all available information sources must be actively leveraged -- including imprecise but readily available semantic observations provided by humans. To achieve this, this work develops and validates a novel collaborative human-machine sensing solution for dynamic target search. Our approach uses continuous partially observable Markov decision process (CPOMDP) planning to generate vehicle trajectories that optimally exploit imperfect detection data from onboard sensors, as well as semantic natural language observations that can be specifically requested from human sensors. The key innovation is a scalable hierarchical Gaussian mixture model formulation for efficiently solving CPOMDPs with semantic observations in continuous dynamic state spaces. The approach is demonstrated and validated with a real human-robot team engaged in dynamic indoor target search and capture scenarios on a custom testbed.
Generative Adversarial Network based Autoencoder: Application to fault detection problem for closed loop dynamical systems
Chakraborty, Indrasis, Chakraborty, Rudrasis, Vrabie, Draguna
Fault detection problem for closed loop uncertain dynamical systems, is investigated in this paper, using different deep learning based methods. Traditional classifier based method does not perform well, because of the inherent difficulty of detecting system level faults for closed loop dynamical system. Specifically, acting controller in any closed loop dynamical system, works to reduce the effect of system level faults. A novel Generative Adversarial based deep Autoencoder is designed to classify datasets under normal and faulty operating conditions. This proposed network performs significantly well when compared to any available classifier based methods, and moreover, does not require labeled fault incorporated datasets for training purpose. Finally, this aforementioned network's performance is tested on a high complexity building energy system dataset.
Q-Learning Algorithm for VoLTE Closed-Loop Power Control in Indoor Small Cells
Mismar, Faris B., Evans, Brian L.
We propose a closed-loop power control algorithm for the downlink of the voice over LTE (VoLTE) radio bearer for an indoor environment served by small cells. The main contributions of our paper are: 1) proposing closed-loop power control for downlink VoLTE (or any packetized voice bearer), 2) deriving an upper bound of the loss in VoLTE downlink signal to noise plus interference ratio which the closed-loop power control has to overcome, 3) employing reinforcement learning to perform closed-loop power control, and 4) showing that this closed-loop power control method can improve the quality of VoLTE in a realistic network setup. Our simulation results have shown that our proposed algorithm significantly improved both voice retainability and mean opinion score as a result of maintaining the effective downlink signal to interference plus noise ratio against adverse network operational issues and faults.
Closed-Loop Neuroscience and Technology - OpenMind
Breakthroughs in studies of the nervous system over the past centuries have been dramatic, with key findings in experimental and theoretical neuroscience. These breakthroughs have helped to understand important aspects of how the brain works, which also provides new inspiration for technology and artificial intelligence. Moreover, the continuous development of new automatic data and image processing methods that arise out of neuroscience and genetics experiments, control technology applied to neurophysiology experiments and the use of computational neuroscience to represent and integrate information, feeds back knowledge about the brain and creates new opportunities for interaction between the nervous system and computational intelligence paradigms, robotics, brain-machine interfaces and all sorts of prosthetic and augmented reality devices.
Closed-Loop Policies for Operational Tests of Safety-Critical Systems
Morton, Jeremy, Wheeler, Tim A., Kochenderfer, Mykel J.
Manufacturers of safety-critical systems must make the case that their product is sufficiently safe for public deployment. Much of this case often relies upon critical event outcomes from real-world testing, requiring manufacturers to be strategic about how they allocate testing resources in order to maximize their chances of demonstrating system safety. This work frames the partially observable and belief-dependent problem of test scheduling as a Markov decision process, which can be solved efficiently to yield closed-loop manufacturer testing policies. By solving for policies over a wide range of problem formulations, we are able to provide high-level guidance for manufacturers and regulators on issues relating to the testing of safety-critical systems. This guidance spans an array of topics, including circumstances under which manufacturers should continue testing despite observed incidents, when manufacturers should test aggressively, and when regulators should increase or reduce the real-world testing requirements for an autonomous vehicle.
Machine Learning in closed loop systems
CRIXLabs (DBA Quantified Skin) is hosting a workshop on closed loop systems in machine learning. Jon Stenstrom et al (Co-Founder) will discuss data capture techniques to enable such a system and Shalini Ananda et al (Co-Founder) will discuss current tools that enable closed loop learning within our platform. We welcome those with machine learning experience and an interest in working with images and signal processing. Please do not hesitate to reach out to Shalini - shalini@quantifiedskin.com with any questions you may have.
A statistical learning strategy for closed-loop control of fluid flows
Guéniat, Florimond, Mathelin, Lionel, Hussaini, M. Yousuff
This work discusses a closed-loop control strategy for complex systems utilizing scarce and streaming data. A discrete embedding space is first built using hash functions applied to the sensor measurements from which a Markov process model is derived, approximating the complex system's dynamics. A control strategy is then learned using reinforcement learning once rewards relevant with respect to the control objective are identified. This method is designed for experimental configurations, requiring no computations nor prior knowledge of the system, and enjoys intrinsic robustness. It is illustrated on two systems: the control of the transitions of a Lorenz 63 dynamical system, and the control of the drag of a cylinder flow. The method is shown to perform well.
Reinforcement Learning for Mixed Open-loop and Closed-loop Control
Hansen, Eric A., Barto, Andrew G., Zilberstein, Shlomo
Closed-loop control relies on sensory feedback that is usually assumed to be free. But if sensing incurs a cost, it may be costeffective to take sequences of actions in open-loop mode. We describe a reinforcement learning algorithm that learns to combine open-loop and closed-loop control when sensing incurs a cost. Although we assume reliable sensors, use of open-loop control means that actions must sometimes be taken when the current state of the controlled system is uncertain. This is a special case of the hidden-state problem in reinforcement learning, and to cope, our algorithm relies on short-term memory. The main result of the paper is a rule that significantly limits exploration of possible memory states by pruning memory states for which the estimated value of information is greater than its cost. We prove that this rule allows convergence to an optimal policy.