Collaborating Authors


Creating Heatmaps and Clustering in R


In the R code above, the bluered() function [in gplots package] is used to generate a smoothly varying New What you'll learn to create colorful heatmaps showing the relationship between species and also gene expression levels between samples how to cluster species/genes in the data sets Requirements Description In this video the student will be able to use clustering methods to find clusters in his data. He will also be able to make nice-looking heatmaps using the heatmap and the pheatmap command. Clustering topics such as k-means clustering, PAM clustering, Silhouette plots, and elbow plots will be covered. Minimal familiarity with R coding is required. In this video the student will be able to use clustering methods to find clusters in his data.

Ensemble Methods: A Beginner's Guide


When I started my Data Science journey,few terms like ensemble,boosting often popped up.Whenever I opened the discussion forum of any Kaggle Competition or looked at any winner's solution,it was mostly filled with these things. At first these discussions sounded totally alien,and these class of ensemble models looked like some fancy stuff not meant for the newbies,but trust me once you have a basic understanding behind the concepts you are going to love them! So let's start with a very simple question,What exactly is ensemble? "A group of separate things/people that contribute to a coordinated whole" In a way this is kind of the core idea behind the entire class of ensemble learning! Well let's rewind the clocks a bit and go back to the school days for a while, remember you used to get a report card with an overall grade.Well how exactly was this overall grade calculated,your teachers of respective subjects gave some feedback based on their set of criteria,for example your math teacher would assess you on his own criteria like algebra,trigonometry etc, sports teacher would judge you how you perform on the field,your music teacher would judge on you vocal skills.Point being each of these teachers have their own set of rules of judging the performance of a student and later all of these are combined to give an overall grade on the performance of the student.

PhD student: Differential Privacy for Machine Learning and Fairness M/F Job


SAP started in 1972 as a team of five colleagues with a desire to do something new. Together, they changed enterprise software and reinvented how business was done. Today, as a market leader in enterprise application software, we remain true to our roots. That's why we engineer solutions to fuel innovation, foster equality and spread opportunity for our employees and customers across borders and cultures. SAP values the entrepreneurial spirit, fostering creativity and building lasting relationships with our employees.

Code-free machine learning: AutoML with AutoGluon, Amazon SageMaker, and AWS Lambda


One of AWS's goals is to put machine learning (ML) in the hands of every developer. With the open-source AutoML library AutoGluon, deployed using Amazon SageMaker and AWS Lambda, we can take this a step further, putting ML in the hands of anyone who wants to make predictions based on data--no prior programming or data science expertise required. AutoGluon automates ML for real-world applications involving image, text, and tabular datasets. AutoGluon trains multiple ML models to predict a particular feature value (the target value) based on the values of other features for a given observation. During training, the models learn by comparing their predicted target values to the actual target values available in the training data, using appropriate algorithms to improve their predictions accordingly.

Why you should learn Computer Vision and how you can get started


In today's world, Computer Vision technologies are everywhere. They are embedded within many of the tools and applications that we use on a daily basis. However, we often pay little attention to those underlaying Computer Vision technologies because they tend to run in the background. As a result, only a small fraction of those outside the tech industries know about the importance of those technologies. Therefore, the goal of this article is to provide an overview of Computer Vision to those with little to no knowledge about the field. I attempt to achieve this goal by answering three questions: What is Computer Vision?, Why should you learn Computer Vision? and How you can get started?

Examining Undergraduate Computer Science Participation in North Carolina

Communications of the ACM

Former U.S. President Obama put forth the initiative'CSForAll' in order to prepare all students to learn computer science (CS) skills and be prepared for the digital economy. The'ForAll' portion of the title emphasizes the importance of inclusion in computing via the participation and creation of tools by and for diverse populations in order to "avoid the consequences of narrowly focused AI (computing and other) applications, including the risk of biases in developing algorithms, by taking advantage of a broader spectrum of experience, backgrounds, and opinions."10 Throughout this report, the Obama administration highlighted the number one priority, and challenge, of the field of CS: to equip the next generation with CS knowledge and skills equitably in preparation for the currency of the digital economy. An increase in government funding is part of the initiative for CSForAll. Of the $4 billion pledged in state funding, only $100 million is sent directly to the K–12 school system.17 The rest of the funding is set aside for research and initiatives involving policymakers to help expand CS opportunities. In just one year, the National Science Foundation (NSF) and Corporation for National and Community Service (CNCS) were called to make $135 million in CS funding available.17 The initiative also called for "expanding access to prior NSF supported programs and professional learning communities through their CS10k that led to the creation of more inclusive and accessible CS education curriculum including "Exploring CS and Advanced Placement (AP) CS Principles."

Courses bring field sites and labs to the small screen


> Science's COVID-19 coverage is supported by the Pulitzer Center. In a normal summer, Appledore Island, a 39-hectare outcrop 12 kilometers off the coast of Maine and New Hampshire, becomes a classroom. Students from high school to graduate level live in close quarters, eat in a communal dining hall, and work shoulder to shoulder to explore the biology of the shore and waters in 18 courses organized by the Shoals Marine Laboratory. But this summer, with the pandemic surging, students have stayed home. Instead, a skeleton staff on Appledore is streaming field trips and dissections of fish and invertebrates and setting up cameras to gather data for students. Rather than leading students around the island, coastal restoration ecologist Gregg Moore from the University of New Hampshire (UNH), Durham, hauls a backpack full of equipment: “a dual modem with two different cellular carriers, a signal-boosting directional antenna, and a large DC power source,” he says. The equipment allows him to teach 12 remote students—twice the course's usual enrollment—basic techniques of coastal ecology. Moore's is just one of hundreds of lab and field courses forced online by COVID-19—“a seismic shift for those who were not already involved in distance or online education,” says Martin Storksdieck, a science education researcher at Oregon State University, Corvallis. Some researchers worry students will miss out on certain practical and problem-solving skills and won't be able to judge whether the hands-on work of a scientist is a good fit for them. But instructors are developing high-tech ways to simulate the field and lab experiences. “I would say [these courses] are not virtual,” says Jennifer Seavey, director of the Shoals lab. “They are real.” And some advantages are emerging. By lowering geographical and financial barriers, Seavey says, “Virtual field courses are democratizing fieldwork.” The shift has taken ingenuity. “Professors must get creative and use a combination of what is available,” including online videos and free or commercially available online labs, says Mildred Pointer, a physiologist at Howard University who is working on a fall course in general biology. No single tool meets all their needs, Pointer says. As the pandemic gained momentum, emails flew among the leaders of the National Association of Geoscience Teachers. Many U.S. geology majors must take a “capstone” field course to graduate. The cancellation of more than three-quarters of these courses jeopardized graduation for many majors. So the association invited instructors to develop learning objectives that did not depend on students doing fieldwork. It also compiled online exercises to help the 29 field courses that have moved online this summer. Lessons range from “Orienteering in Minecraft” to “Geology of Yosemite Valley,” which includes a 43-stop Google Earth tour with photos and embedded text. Like Moore, geoscientist Jim Handschy wanted to give remote students “as close to the real experience as possible.” He runs Indiana University's Judson Mead Geologic Field Station in Montana, which had enrolled 60 students before classes were canceled in March. He and a few instructors visited each outcrop in their course plan, filmed the rocks and landscape, and captured magnified views of samples. Each week, the class delves deeper into the rock layers and their history. For their final project, students digitally map a 3100-hectare landscape. Shannon Dulin, a geologist at the University of Oklahoma, Norman, who just finished teaching a field course, sees the value of learning how to survey a landscape without setting foot on it. On their class evaluations, her students said they gained unexpected skills. “And these are skills they are going to need on the job,” she adds, as geologists are increasingly being asked to evaluate sites they don't visit. In other fields, hands-on learning takes place in labs. Typically, students work in pairs and share equipment, “so there are a lot of issues about virus transmission,” says Heather Lewandowski, a physicist at the University of Colorado (CU), Boulder. At her university this fall, lab exercises as diverse as building an electrical circuit or analyzing solar flare data will most likely be completely remote. Luckily, physics already had a foot in the virtual lab world—especially at CU. There, back in 2002, Nobel laureate Carl Wieman developed the Physics Education Technology (PhET) Interactive Simulations project to provide “games” that teach students basic physics concepts. The PhET web portal now has 106 physics-based simulations and another 50 or so for other disciplines. It became a go-to place this spring for faculty shifting to online teaching; traffic increased fivefold, says Director Katherine Perkins. In addition, several universities have adopted a handheld device called the iOLab that rents for $50 a semester. With it, students can measure magnetism, light intensity, acceleration, temperature, gravity, and atmospheric pressure, and do basic physics experiments at home. “They like that we trust them and are not just giving them instructions,” says iOLab inventor and physicist Mats Selen at the University of Illinois, Urbana-Champaign. Lewandowski and her colleagues surveyed physics instructors and students about their experiences and posted their findings on arXiv, the physics preprint server, on 2 July. Respondents said online labs work best when projects are open-ended, and online class meetings are kept small. They complained about technical difficulties, students having unequal access to the internet and materials, and longer prep times for both students and instructors. But they reported they could meet most key learning objectives, Lewandowski says, even though “there are lots of things we can't replicate in remote experiments,” such as such as building vacuum chambers or troubleshooting equipment. Some institutions decided this spring that virtual just wouldn't do. The Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts, simply canceled its summer courses. “MBL courses are world-renowned for the intensity of the hands-on nature of the lab work,” says Director Nipam Patel. Students spend long hours with famous faculty and do their own projects using organisms collected locally. “We felt that it would be exceedingly difficult to replicate these experiences as a virtual lab course.” Other institutions will try for a mix of in-person and virtual labs. Suely Black, chemistry chair at Norfolk State University, expects only half of his students will be in lab each week this fall, while the other half will be in online classes analyzing data and writing reports. “The crisis has caused us to more critically evaluate what activities students must experience in the lab setting,” he says. Similarly, this fall, organic chemistry students at the University of Michigan (UM), Ann Arbor, will rotate into the lab in small groups, giving each a taste of the hands-on experience. Personal protection equipment is standard for this course and all the work is done in hoods with excellent air exchange, so “they are really fully protected,” says UM biochemist Kathleen Nolta. Storksdieck, an advocate of online learning, questions the value of smelling fumes or using a pipette. “We have to ask whether all the hands-on taught so far was all that great,” he says. Dominique Durand, a biomedical engineer at Case Western Reserve University, says after he put a master's program in biomedical engineering completely online 5 years ago, he concluded that solving problems was more important than hands-on experience. And University of California, Santa Cruz, ecologist Erika Zavaleta thinks virtual courses will open fieldwork to far more students. “There are things you can do online that you can't do in person,” she adds, such as visiting more places than possible by driving. Even so, Handschy laments that his geology students will not have the 12-hour-a-day immersive interactions with each other and faculty that past classes have had. Natalie White, a rising junior at UNH who took Moore's course on Appledore last year, agrees: “You don't have all the time in between when you walk around the island and can ask impromptu questions.” Appledore Island is the source of some her fondest memories. “I think they are missing out on the community.”

The lost art of data science for understanding


There is a tremendous difference between data science for understanding and data science for prediction. The former is understanding why people use the emoji and what emotional states they are trying to communicate-- and how this differs across cultures and age groups. The latter is predicting that if someone types certain words in a certain order then the next emoji they'll type is . The former requires a rich and interdisciplinary set of skills -- mostly human skills -- as I first argued in a talk at Penn State in 2016. The latter is a purely technical problem -- and may even be a trivial technical problem -- and is just one part of the end-to-end data science process.

AKA Customized Functions, Pepper Can Work as an English


AKA, an artificial intelligence development company, announced a function called "Academy Mode", developed for Pepper to serve in the classroom despite the current situation of COVID-19. Academy Mode is designed specifically for the Softbank Robotics Humanoid robot, Pepper, to fit classroom settings and will be released in Korea, Japan, and China's market first. Since entering Japan's market in 2015, AKA has been working together continuously with Softbank Robotics Japan. In May 2019, AKA became an official reseller of Softbank Robotics China for the Pepper robot. Since then, AKA has been actively developing different functions for Pepper to work better in the English education environment.