Journal


[Special Issue Perspective] Data-driven predictions in the science of science

Science

The desire to predict discoveries--to have some idea, in advance, of what will be discovered, by whom, when, and where--pervades nearly all aspects of modern science, from individual scientists to publishers, from funding agencies to hiring committees. In this Essay, we survey the emerging and interdisciplinary field of the "science of science" and what it teaches us about the predictability of scientific discovery. We then discuss future opportunities for improving predictions derived from the science of science and its potential impact, positive and negative, on the scientific community.


[Introduction to Special Issue] Prediction and its limits

Science

A major challenge for using data to make predictions is distinguishing what is meaningful from noise. As this special section explores, prediction is now a developing science. Social scientists and the machine learning community are acquiring new analytical tools to distinguish meaningful patterns from noise. Several authors in this special section describe the importance of realistic goals that seek to balance machine learning approaches with the human element.


Turn-Taking and Coordination in Human-Machine Interaction

AI Magazine

This issue of AI Magazine brings together a collection of articles on challenges, mechanisms, and research progress in turn-taking and coordination between humans and machines.


[Special Issue Review] Deconstructing the sensation of pain: The influence of cognitive processes on pain perception

Science

Phenomena such as placebo analgesia or pain relief through distraction highlight the powerful influence cognitive processes and learning mechanisms have on the way we perceive pain. Although contemporary models of pain acknowledge that pain is not a direct readout of nociceptive input, the neuronal processes underlying cognitive modulation are not yet fully understood. Modern concepts of perception--which include computational modeling to quantify the influence of cognitive processes--suggest that perception is critically determined by expectations and their modification through learning. Research on pain has just begun to embrace this view.


Innovation Nation Autumn 2016 Resource

#artificialintelligence

This edition of Innovation Nation focuses on the people behind digital disruption at Capgemini. We've assembled a number of articles in this issue, starting with "Next generation Global Business Services" that looks at how the human-machine relationship can be optimized to exceed individual customer expectations. Divya Kumar and Christopher Stancombe explore this relationship further in their respective articles on incremental artificial intelligence (AI) implementation and robotic process automation (RPA). Our expert insights this month, collated across the breadth of the business, touch on aspects of digital disruption in Business Services and the people it affects.


Answer Set Programming: An Introduction to the Special Issue

AI Magazine

This editorial introduces answer set programming, a vibrant research area in computational knowledge representation and declarative programming. We give a brief overview of the articles that form this special issue on answer set programming and of the main topics they discuss.


Introduction to the Special Issue on Innovative Applications of Artificial Intelligence 2015

AI Magazine

This issue features expanded versions of articles selected from the 2015 AAAI Conference on Innovative Applications of Artificial Intelligence held in Austin, Texas. We present a selection of four articles describing deployed applications plus two more articles that discuss work on emerging applications.


Call for papers: Special Issue on Machine Learning for Knowledge Base Generation and Population

#artificialintelligence

In the last decade, in the Semantic Web field, knowledge bases have attracted tremendous interest from both academia and industry and many large knowledge bases are now available. In order to cope with this issue, the availability of automatic methods for schema aware generation and population of knowledge bases results fundamental. The primary goal of the special issue is to provide novel machine learning/data mining methods for knowledge base generation, population, enrichment, evolution showing advances in the Semantic Web field. Please indicate in the cover letter that it is for the Special Issue on Machine Learning for Knowledge Base Generation and Population.


Table of Contents -- July 17, 2015, 349 (6245)

#artificialintelligence

COVER Intelligence is hard to define, but you know it when you see it … Or do you? Can we learn anything about how our neuron-based minds work from these machines? Do we need to worry about what these algorithmic minds might be learning about us? On the cover is a visualization of human brain connectivity from MRI diffusion imaging, with superimposed computer connectors.


Beyond the Turing Test

AI Magazine

The articles in this special issue of AI Magazine include those that propose specific tests, and those that look at the challenges inherent in building robust, valid, and reliable tests for advancing the state of the art in AI.