Book
Natural Language Generation
This book provides a broad overview of Natural Language Generation (NLG), including technology, user requirements, evaluation, and real-world applications. The focus is on concepts and insights which hopefully will remain relevant for many years, not on the latest LLM innovations. It draws on decades of work by the author and others on NLG. The book has the following chapters: Introduction to NLG; Rule-Based NLG; Machine Learning and Neural NLG; Requirements; Evaluation; Safety, Maintenance, and Testing; and Applications. All chapters include examples and anecdotes from the author's personal experiences, and end with a Further Reading section. The book should be especially useful to people working on applied NLG, including NLG researchers, people in other fields who want to use NLG, and commercial developers. It will not however be useful to people who want to understand the latest LLM technology. There is a companion site with more information at https://ehudreiter.com/book/
Real-time Ship Recognition and Georeferencing for the Improvement of Maritime Situational Awareness
In an era where maritime infrastructures are crucial, advanced situational awareness solutions are increasingly important. The use of optical camera systems can allow real-time usage of maritime footage. This thesis presents an investigation into leveraging deep learning and computer vision to advance real-time ship recognition and georeferencing for the improvement of maritime situational awareness. A novel dataset, ShipSG, is introduced, containing 3,505 images and 11,625 ship masks with corresponding class and geographic position. After an exploration of state-of-the-art, a custom real-time segmentation architecture, ScatYOLOv8+CBAM, is designed for the NVIDIA Jetson AGX Xavier embedded system. This architecture adds the 2D scattering transform and attention mechanisms to YOLOv8, achieving an mAP of 75.46% and an 25.3 ms per frame, outperforming state-of-the-art methods by over 5%. To improve small and distant ship recognition in high-resolution images on embedded systems, an enhanced slicing mechanism is introduced, improving mAP by 8% to 11%. Additionally, a georeferencing method is proposed, achieving positioning errors of 18 m for ships up to 400 m away and 44 m for ships between 400 m and 1200 m. The findings are also applied in real-world scenarios, such as the detection of abnormal ship behaviour, camera integrity assessment and 3D reconstruction. The approach of this thesis outperforms existing methods and provides a framework for integrating recognized and georeferenced ships into real-time systems, enhancing operational effectiveness and decision-making for maritime stakeholders. This thesis contributes to the maritime computer vision field by establishing a benchmark for ship segmentation and georeferencing research, demonstrating the viability of deep-learning-based recognition and georeferencing methods for real-time maritime monitoring.
Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Handy Appetizer
Peng, Benji, Pan, Xuanhe, Wen, Yizhu, Bi, Ziqian, Chen, Keyu, Li, Ming, Liu, Ming, Niu, Qian, Liu, Junyu, Wang, Jinlang, Zhang, Sen, Xu, Jiawei, Feng, Pohsun
This book explores the role of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in driving the progress of big data analytics and management. The book focuses on simplifying the complex mathematical concepts behind deep learning, offering intuitive visualizations and practical case studies to help readers understand how neural networks and technologies like Convolutional Neural Networks (CNNs) work. It introduces several classic models and technologies such as Transformers, GPT, ResNet, BERT, and YOLO, highlighting their applications in fields like natural language processing, image recognition, and autonomous driving. The book also emphasizes the importance of pre-trained models and how they can enhance model performance and accuracy, with instructions on how to apply these models in various real-world scenarios. Additionally, it provides an overview of key big data management technologies like SQL and NoSQL databases, as well as distributed computing frameworks such as Apache Hadoop and Spark, explaining their importance in managing and processing vast amounts of data. Ultimately, the book underscores the value of mastering deep learning and big data management skills as critical tools for the future workforce, making it an essential resource for both beginners and experienced professionals.
Explainable Human-AI Interaction: A Planning Perspective
Sreedharan, Sarath, Kulkarni, Anagha, Kambhampati, Subbarao
From its inception, AI has had a rather ambivalent relationship with humans -- swinging between their augmentation and replacement. Now, as AI technologies enter our everyday lives at an ever increasing pace, there is a greater need for AI systems to work synergistically with humans. One critical requirement for such synergistic human-AI interaction is that the AI systems be explainable to the humans in the loop. To do this effectively, AI agents need to go beyond planning with their own models of the world, and take into account the mental model of the human in the loop. Drawing from several years of research in our lab, we will discuss how the AI agent can use these mental models to either conform to human expectations, or change those expectations through explanatory communication. While the main focus of the book is on cooperative scenarios, we will point out how the same mental models can be used for obfuscation and deception. Although the book is primarily driven by our own research in these areas, in every chapter, we will provide ample connections to relevant research from other groups.
PaperWeaver: Enriching Topical Paper Alerts by Contextualizing Recommended Papers with User-collected Papers
Lee, Yoonjoo, Kang, Hyeonsu B., Latzke, Matt, Kim, Juho, Bragg, Jonathan, Chang, Joseph Chee, Siangliulue, Pao
With the rapid growth of scholarly archives, researchers subscribe to "paper alert" systems that periodically provide them with recommendations of recently published papers that are similar to previously collected papers. However, researchers sometimes struggle to make sense of nuanced connections between recommended papers and their own research context, as existing systems only present paper titles and abstracts. To help researchers spot these connections, we present PaperWeaver, an enriched paper alerts system that provides contextualized text descriptions of recommended papers based on user-collected papers. PaperWeaver employs a computational method based on Large Language Models (LLMs) to infer users' research interests from their collected papers, extract context-specific aspects of papers, and compare recommended and collected papers on these aspects. Our user study (N=15) showed that participants using PaperWeaver were able to better understand the relevance of recommended papers and triage them more confidently when compared to a baseline that presented the related work sections from recommended papers.
The Framework of a Design Process Language
The thesis develops a view of design in a concept formation framework and outlines a language to describe both the object of the design and the process of designing. The unknown object at the outset of the design work may be seen as an unknown concept that the designer is to define. Throughout the process, she develops a description of this object by relating it to known concepts. The search stops when the designer is satisfied that the design specification is complete enough to satisfy the requirements from it once built. It is then a collection of propositions that all contribute towards defining the design object - a collection of sentences describing relationships between the object and known concepts. Also, the design process itself may be described by relating known concepts - by organizing known abilities into particular patterns of activation, or mobilization. In view of the demands posed to a language to use in this concept formation process, the framework of a Design Process Language (DPL) is developed. The basis for the language are linguistic categories that act as classes of relations used to combine concepts, containing relations used for describing process and object within the same general system, with some relations being process specific, others being object specific, and with the bulk being used both for process and object description. Another outcome is the distinction of modal relations, or relations describing futurity, possibility, willingness, hypothetical events, and the like. The design process almost always includes aspects such as these, and it is thus necessary for a language facilitating design process description to support such relationships to be constructed. The DPL is argued to be a foundation whereupon to build a language that can be used for enabling computers to be more useful - act more intelligently - in the design process.
The Elements of Differentiable Programming
Blondel, Mathieu, Roulet, Vincent
Artificial intelligence has recently experienced remarkable advances, fueled by large models, vast datasets, accelerated hardware, and, last but not least, the transformative power of differentiable programming. This new programming paradigm enables end-to-end differentiation of complex computer programs (including those with control flows and data structures), making gradient-based optimization of program parameters possible. As an emerging paradigm, differentiable programming builds upon several areas of computer science and applied mathematics, including automatic differentiation, graphical models, optimization and statistics. This book presents a comprehensive review of the fundamental concepts useful for differentiable programming. We adopt two main perspectives, that of optimization and that of probability, with clear analogies between the two. Differentiable programming is not merely the differentiation of programs, but also the thoughtful design of programs intended for differentiation. By making programs differentiable, we inherently introduce probability distributions over their execution, providing a means to quantify the uncertainty associated with program outputs.
Machine Intelligence in Africa: a survey
Tapo, Allahsera Auguste, Traore, Ali, Danioko, Sidy, Tembine, Hamidou
In the last 5 years, the availability of large audio datasets in African countries has opened unlimited opportunities to build machine intelligence (MI) technologies that are closer to the people and speak, learn, understand, and do businesses in local languages, including for those who cannot read and write. Unfortunately, these audio datasets are not fully exploited by current MI tools, leaving several Africans out of MI business opportunities. Additionally, many state-of-the-art MI models are not culture-aware, and the ethics of their adoption indexes are questionable. The lack thereof is a major drawback in many applications in Africa. This paper summarizes recent developments in machine intelligence in Africa from a multi-layer multiscale and culture-aware ethics perspective, showcasing MI use cases in 54 African countries through 400 articles on MI research, industry, government actions, as well as uses in art, music, the informal economy, and small businesses in Africa. The survey also opens discussions on the reliability of MI rankings and indexes in the African continent as well as algorithmic definitions of unclear terms used in MI.
EmTech Next is happening June 13-15
For COOs, CIOs and IT leadership, EmTech Next uncovers the opportunities exposed by cutting-edge technologies that are reshaping the way business innovates, operates and grows. Our agenda for this 6th edition of our signature digital transformation event covers generative AI, web3, metaverses, leadership strategies for the digital workforce, technology and industry 4.0, and the emerging technologies transforming the customer experience.
Books :: Machine Learning for Financial Risk Management with Python: Algorithms for Modeling Risk 1st Edition
All Indian Reprints of O'Reilly are printed in Grayscale Financial risk management is quickly evolving with the help of artificial intelligence. With this practical book, developers, programmers, engineers, financial analysts, risk analysts, and quantitative and algorithmic analysts will examine Python-based machine learning and deep learning models for assessing financial risk. Building hands-on AI-based financial modeling skills, you'll learn how to replace traditional financial risk models with ML models. Author Abdullah Karasan helps you explore the theory behind financial risk modeling before diving into practical ways of employing ML models in modeling financial risk using Python.