Country
Independence with Lower and Upper Probabilities
It is shown that the ability of the interval probability representation to capture epistemological independence is severely limited. Two events are epistemologically independent if knowledge of the first event does not alter belief (i.e., probability bounds) about the second. However, independence in this form can only exist in a 2-monotone probability function in degenerate cases i.e., if the prior bounds are either point probabilities or entirely vacuous. Additional limitations are characterized for other classes of lower probabilities as well. It is argued that these phenomena are simply a matter of interpretation. They appear to be limitations when one interprets probability bounds as a measure of epistemological indeterminacy (i.e., uncertainty arising from a lack of knowledge), but are exactly as one would expect when probability intervals are interpreted as representations of ontological indeterminacy (indeterminacy introduced by structural approximations). The ontological interpretation is introduced and discussed.
An Evaluation of Structural Parameters for Probabilistic Reasoning: Results on Benchmark Circuits
Fattah, Yousri El, Dechter, Rina
Many algorithms for processing probabilistic networks are dependent on the topological properties of the problem's structure. Such algorithms (e.g., clustering, conditioning) are effective only if the problem has a sparse graph captured by parameters such as tree width and cycle-cut set size. In this paper we initiate a study to determine the potential of structure-based algorithms in real-life applications. We analyze empirically the structural properties of problems coming from the circuit diagnosis domain. Specifically, we locate those properties that capture the effectiveness of clustering and conditioning as well as of a family of conditioning+clustering algorithms designed to gradually trade space for time. We perform our analysis on 11 benchmark circuits widely used in the testing community. We also report on the effect of ordering heuristics on tree-clustering and show that, on our benchmarks, the well-known max-cardinality ordering is substantially inferior to an ordering called min-degree.
Flexible Policy Construction by Information Refinement
Horsch, Michael C., Poole, David L.
We report on work towards flexible algorithms for solving decision problems represented as influence diagrams. An algorithm is given to construct a tree structure for each decision node in an influence diagram. Each tree represents a decision function and is constructed incrementally. The improvements to the tree converge to the optimal decision function (neglecting computational costs) and the asymptotic behaviour is only a constant factor worse than dynamic programming techniques, counting the number of Bayesian network queries. Empirical results show how expected utility increases with the size of the tree and the number of Bayesian net calculations.
Efficient Search-Based Inference for Noisy-OR Belief Networks: TopEpsilon
Inference algorithms for arbitrary belief networks are impractical for large, complex belief networks. Inference algorithms for specialized classes of belief networks have been shown to be more efficient. In this paper, we present a search-based algorithm for approximate inference on arbitrary, noisy-OR belief networks, generalizing earlier work on search-based inference for two-level, noisy-OR belief networks. Initial experimental results appear promising.
A Sufficiently Fast Algorithm for Finding Close to Optimal Junction Trees
An algorithm is developed for finding a close to optimal junction tree of a given graph G. The algorithm has a worst case complexity O(c^k n^a) where a and c are constants, n is the number of vertices, and k is the size of the largest clique in a junction tree of G in which this size is minimized. The algorithm guarantees that the logarithm of the size of the state space of the heaviest clique in the junction tree produced is less than a constant factor off the optimal value. When k = O(log n), our algorithm yields a polynomial inference algorithm for Bayesian networks.
Learning Bayesian Networks with Local Structure
Friedman, Nir, Goldszmidt, Moises
In this paper we examine a novel addition to the known methods for learning Bayesian networks from data that improves the quality of the learned networks. Our approach explicitly represents and learns the local structure in the conditional probability tables (CPTs), that quantify these networks. This increases the space of possible models, enabling the representation of CPTs with a variable number of parameters that depends on the learned local structures. The resulting learning procedure is capable of inducing models that better emulate the real complexity of the interactions present in the data. We describe the theoretical foundations and practical aspects of learning local structures, as well as an empirical evaluation of the proposed method. This evaluation indicates that learning curves characterizing the procedure that exploits the local structure converge faster than these of the standard procedure. Our results also show that networks learned with local structure tend to be more complex (in terms of arcs), yet require less parameters.
Why Is Diagnosis Using Belief Networks Insensitive to Imprecision In Probabilities?
Henrion, Max, Pradhan, Malcolm, del Favero, Brendan, Huang, Kurt, Provan, Gregory M., O'Rorke, Paul
Recent research has found that diagnostic performance with Bayesian belief networks is often surprisingly insensitive to imprecision in the numerical probabilities. For example, the authors have recently completed an extensive study in which they applied random noise to the numerical probabilities in a set of belief networks for medical diagnosis, subsets of the CPCS network, a subset of the QMR (Quick Medical Reference) focused on liver and bile diseases. The diagnostic performance in terms of the average probabilities assigned to the actual diseases showed small sensitivity even to large amounts of noise. In this paper, we summarize the findings of this study and discuss possible explanations of this low sensitivity. One reason is that the criterion for performance is average probability of the true hypotheses, rather than average error in probability, which is insensitive to symmetric noise distributions. But, we show that even asymmetric, logodds-normal noise has modest effects. A second reason is that the gold-standard posterior probabilities are often near zero or one, and are little disturbed by noise.
Quasi-Bayesian Strategies for Efficient Plan Generation: Application to the Planning to Observe Problem
Cozman, Fabio Gagliardi, Krotkov, Eric
Quasi-Bayesian theory uses convex sets of probability distributions and expected loss to represent preferences about plans. The theory focuses on decision robustness, i.e., the extent to which plans are affected by deviations in subjective assessments of probability. The present work presents solutions for plan generation when robustness of probability assessments must be included: plans contain information about the robustness of certain actions. The surprising result is that some problems can be solved faster in the Quasi-Bayesian framework than within usual Bayesian theory. We investigate this on the planning to observe problem, i.e., an agent must decide whether to take new observations or not. The fundamental question is: How, and how much, to search for a "best" plan, based on the robustness of probability assessments? Plan generation algorithms are derived in the context of material classification with an acoustic robotic probe. A package that constructs Quasi-Bayesian plans is available through anonymous ftp.
Bucket Elimination: A Unifying Framework for Several Probabilistic Inference
Probabilistic inference algorithms for finding the most probable explanation, the maximum aposteriori hypothesis, and the maximum expected utility and for updating belief are reformulated as an elimination--type algorithm called bucket elimination. This emphasizes the principle common to many of the algorithms appearing in that literature and clarifies their relationship to nonserial dynamic programming algorithms. We also present a general way of combining conditioning and elimination within this framework. Bounds on complexity are given for all the algorithms as a function of the problem's structure.
Sound Abstraction of Probabilistic Actions in The Constraint Mass Assignment Framework
This paper provides a formal and practical framework for sound abstraction of probabilistic actions. We start by precisely defining the concept of sound abstraction within the context of finite-horizon planning (where each plan is a finite sequence of actions). Next we show that such abstraction cannot be performed within the traditional probabilistic action representation, which models a world with a single probability distribution over the state space. We then present the constraint mass assignment representation, which models the world with a set of probability distributions and is a generalization of mass assignment representations. Within this framework, we present sound abstraction procedures for three types of action abstraction. We end the paper with discussions and related work on sound and approximate abstraction. We give pointers to papers in which we discuss other sound abstraction-related issues, including applications, estimating loss due to abstraction, and automatically generating abstraction hierarchies.