Goto

Collaborating Authors

 Country


Projection Retrieval for Classification

Neural Information Processing Systems

In many applications classification systems often require in the loop human intervention. In such cases the decision process must be transparent and comprehensible simultaneously requiring minimal assumptions on the underlying data distribution. To tackle this problem, we formulate it as an axis-alligned subspacefinding task under the assumption that query specific information dictates the complementary use of the subspaces. We develop a regression-based approach called RECIP that efficiently solves this problem by finding projections that minimize a nonparametric conditional entropy estimator. Experiments show that the method is accurate in identifying the informative projections of the dataset, picking the correct ones to classify query points and facilitates visual evaluation by users.


Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness discrimination

Neural Information Processing Systems

Hypothesis testing on signals defined on surfaces (such as the cortical surface) is a fundamental component of a variety of studies in Neuroscience. The goal here is to identify regions that exhibit changes as a function of the clinical condition under study. As the clinical questions of interest move towards identifying very early signs of diseases, the corresponding statistical differences at the group level invariably become weaker and increasingly hard to identify. Indeed, after a multiple comparisons correction is adopted (to account for correlated statistical tests over all surface points), very few regions may survive. In contrast to hypothesis tests on point-wise measurements, in this paper, we make the case for performing statistical analysis on multi-scale shape descriptors that characterize the local topological context of the signal around each surface vertex. Our descriptors are based on recent results from harmonic analysis, that show how wavelet theory extends to non-Euclidean settings (i.e., irregular weighted graphs). We provide strong evidence that these descriptors successfully pick up group-wise differences, where traditional methods either fail or yield unsatisfactory results. Other than this primary application, we show how the framework allows performing cortical surface smoothing in the native space without mappint to a unit sphere.


Memorability of Image Regions

Neural Information Processing Systems

While long term human visual memory can store a remarkable amount of visual information, it tends to degrade over time. Recent works have shown that image memorability is an intrinsic property of an image that can be reliably estimated using state-of-the-art image features and machine learning algorithms. However, the class of features and image information that is forgotten has not been explored yet. In this work, we propose a probabilistic framework that models how and which local regions from an image may be forgotten using a data-driven approach that combines local and global images features. The model automatically discovers memorabilitymaps of individual images without any human annotation. We incorporate multiple image region attributes in our algorithm, leading to improved memorability prediction of images as compared to previous works.


Active Learning of Multi-Index Function Models

Neural Information Processing Systems

We consider the problem of actively learning \textit{multi-index} functions of the form $f(\vecx) = g(\matA\vecx)= \sum_{i=1}^k g_i(\veca_i^T\vecx)$ from point evaluations of $f$. We assume that the function $f$ is defined on an $\ell_2$-ball in $\Real^d$, $g$ is twice continuously differentiable almost everywhere, and $\matA \in \mathbb{R}^{k \times d}$ is a rank $k$ matrix, where $k \ll d$. We propose a randomized, active sampling scheme for estimating such functions with uniform approximation guarantees. Our theoretical developments leverage recent techniques from low rank matrix recovery, which enables us to derive an estimator of the function $f$ along with sample complexity bounds. We also characterize the noise robustness of the scheme, and provide empirical evidence that the high-dimensional scaling of our sample complexity bounds are quite accurate.


Near-Optimal MAP Inference for Determinantal Point Processes

Neural Information Processing Systems

Determinantal point processes (DPPs) have recently been proposed as computationally efficientprobabilistic models of diverse sets for a variety of applications, including document summarization, image search, and pose estimation. Many DPP inference operations, including normalization and sampling, are tractable; however, finding the most likely configuration (MAP), which is often required in practice for decoding, is NPhard, so we must resort to approximate inference. This optimization problem, which also arises in experimental design and sensor placement, involves finding the largest principal minor of a positive semidefinite matrix. Because the objective is log-submodular, greedy algorithms have been used in the past with some empirical success; however, these methods only give approximation guarantees in the special case of monotone objectives, which correspond toa restricted class of DPPs. In this paper we propose a new algorithm for approximating the MAP problem based on continuous techniques for submodular functionmaximization. Our method involves a novel continuous relaxation of the log-probability function, which, in contrast to the multilinear extension used for general submodular functions, can be evaluated and differentiated exactly and efficiently. We obtain a practical algorithm with a 1/4-approximation guarantee for a more general class of non-monotone DPPs; our algorithm also extends to MAP inference under complex polytope constraints, making it possible to combine DPPswith Markov random fields, weighted matchings, and other models. We demonstrate that our approach outperforms standard and recent methods on both synthetic and real-world data.


Exact and Stable Recovery of Sequences of Signals with Sparse Increments via Differential _1-Minimization

Neural Information Processing Systems

We consider the problem of recovering a sequence of vectors, $(x_k)_{k=0}^K$, for which the increments $x_k-x_{k-1}$ are $S_k$-sparse (with $S_k$ typically smaller than $S_1$), based on linear measurements $(y_k = A_k x_k + e_k)_{k=1}^K$, where $A_k$ and $e_k$ denote the measurement matrix and noise, respectively. Assuming each $A_k$ obeys the restricted isometry property (RIP) of a certain order---depending only on $S_k$---we show that in the absence of noise a convex program, which minimizes the weighted sum of the $\ell_1$-norm of successive differences subject to the linear measurement constraints, recovers the sequence $(x_k)_{k=1}^K$ \emph{exactly}. This is an interesting result because this convex program is equivalent to a standard compressive sensing problem with a highly-structured aggregate measurement matrix which does not satisfy the RIP requirements in the standard sense, and yet we can achieve exact recovery. In the presence of bounded noise, we propose a quadratically-constrained convex program for recovery and derive bounds on the reconstruction error of the sequence. We supplement our theoretical analysis with simulations and an application to real video data. These further support the validity of the proposed approach for acquisition and recovery of signals with time-varying sparsity.


Fast Resampling Weighted v-Statistics

Neural Information Processing Systems

In this paper, a novel, computationally fast, and alternative algorithm for com- puting weighted v-statistics in resampling both univariate and multivariate data is proposed. To avoid any real resampling, we have linked this problem with finite group action and converted it into a problem of orbit enumeration. For further computational cost reduction, an efficient method is developed to list all orbits by their symmetry order and calculate all index function orbit sums and data function orbit sums recursively. The computational complexity analysis shows reduction in the computational cost from n! or nn level to low-order polynomial level.


Compressive neural representation of sparse, high-dimensional probabilities

Neural Information Processing Systems

This paper shows how sparse, high-dimensional probability distributions could be represented by neurons with exponential compression. The representation is a novel application of compressive sensing to sparse probability distributions rather than to the usual sparse signals. The compressive measurements correspond to expected values of nonlinear functions of the probabilistically distributed variables. When these expected values are estimated by sampling, the quality of the compressed representation is limited only by the quality of sampling. Since the compression preserves the geometric structure of the space of sparse probability distributions, probabilistic computation can be performed in the compressed domain. Interestingly, functions satisfying the requirements of compressive sensing can be implemented as simple perceptrons. If we use perceptrons as a simple model of feedforward computation by neurons, these results show that the mean activity of a relatively small number of neurons can accurately represent a high-dimensional joint distribution implicitly, even without accounting for any noise correlations. This comprises a novel hypothesis for how neurons could encode probabilities in the brain.


Tight Bounds on Profile Redundancy and Distinguishability

Neural Information Processing Systems

The minimax KL-divergence of any distribution from all distributions in a collection P has several practical implications. In compression, it is called redundancy and represents the least additional number of bits over the entropy needed to encode the output of any distribution in P. In online estimation andlearning, it is the lowest expected log-loss regret when guessing a sequence of random values generated by a distribution in P. In hypothesis testing, it upper bounds the largest number of distinguishable distributions in P. Motivated by problems ranging from population estimation to text classification and speech recognition, several machine-learning and information-theory researchers have recently considered label-invariant observations and properties induced by i.i.d.


From Deformations to Parts: Motion-based Segmentation of 3D Objects

Neural Information Processing Systems

We develop a method for discovering the parts of an articulated object from aligned meshes of the object in various three-dimensional poses. We adapt the distance dependentChinese restaurant process (ddCRP) to allow nonparametric discovery ofa potentially unbounded number of parts, while simultaneously guaranteeing a spatially connected segmentation. To allow analysis of datasets in which object instances have varying 3D shapes, we model part variability across poses via affine transformations. By placing a matrix normal-inverse-Wishart prior on these affine transformations, we develop a ddCRP Gibbs sampler which tractably marginalizes over transformation uncertainty. Analyzing a dataset of humans captured indozens of poses, we infer parts which provide quantitatively better deformation predictionsthan conventional clustering methods.