Goto

Collaborating Authors

 Country


Multiagent Knowledge and Belief Change in the Situation Calculus

AAAI Conferences

Belief change is an important research topic in AI. It becomes more perplexing in multi-agent settings, since the action of an agent may be partially observable to other agents. In this paper, we present a general approach to reasoning about actions and belief change in multi-agent settings. Our approach is based on a multi-agent extension to the situation calculus, augmented by a plausibility relation over situations and another one over actions, which is used to represent agents' different perspectives on actions. When an action is performed, we update the agents' plausibility order on situations by giving priority to the plausibility order on actions, in line with the AGM approach of giving priority to new information. We show that our notion of belief satisfies KD45 properties. As to the special case of belief change of a single agent, we show that our framework satisfies most of the classical AGM, KM, and DP postulates. We also present properties concerning the change of common knowledge and belief of a group of agents.


Pruning for Monte Carlo Distributed Reinforcement Learning in Decentralized POMDPs

AAAI Conferences

Decentralized partially observable Markov decision processes (Dec-POMDPs) offer a powerful modeling technique for realistic multi-agent coordination problems under uncertainty. Prevalent solution techniques are centralized and assume prior knowledge of the model. Recently a Monte Carlo based distributed reinforcement learning approach was proposed, where agents take turns to learn best responses to each otherโ€™s policies. This promotes decentralization of the policy computation problem, and relaxes reliance on the full knowledge of the problem parameters. However, this Monte Carlo approach has a large sample complexity, which we address in this paper. In particular, we propose and analyze a modified version of the previous algorithm that adaptively eliminates parts of the experience tree from further exploration, thus requiring fewer samples while ensuring unchanged confidence in the learned value function. Experiments demonstrate significant reduction in sample complexity โ€“ the maximum reductions ranging from 61% to 91% over different benchmark Dec-POMDP problems โ€“ with the final policies being often better due to more focused exploration.


Truncated Incremental Search: Faster Replanning by Exploiting Suboptimality

AAAI Conferences

Incremental heuristic searches try to reuse their previous search efforts whenever these are available. As a result, they can often solve a sequence of similar planning problems much faster than planning from scratch. State-of-the-art incremental heuristic searches such as LPA*, D* and D* Lite all work by propagating cost changes to all the states on the search tree whose g-values (the costs of computed paths from the start) are no longer optimal. While such a complete propagation of cost changes is required to ensure optimality, the propagations can be stopped much earlier if we are looking for solutions within a given suboptimality bound. We present a framework called Truncated Incremental Search that builds on this observation, and uses a target suboptimality bound to efficiently restrict the cost propagations. Using this framework, we develop two algorithms, Truncated LPA* (TLPA*) and Truncated D* Lite (TD* Lite). We discuss their analytical properties and present experimental results for 2D and 3D (x, y, heading) path planning that show significant improvement in runtime over existing incremental heuristic searches when searching for close-to-optimal solutions. In addition, unlike typical incremental searches, Truncated Incremental Search is much less dependent on the proximity of the cost changes to the goal of the search due to the early termination of the cost change propagation.


Online Lazy Updates for Portfolio Selection with Transaction Costs

AAAI Conferences

A major challenge for stochastic optimization is the cost of updating model parameters especially when the number of parameters is large. Updating parameters frequently can prove to be computationally or monetarily expensive. In this paper, we introduce an efficient primal-dual based online algorithm that performs lazy updates to the parameter vector and show that its performance is competitive with reasonable strategies which have the benefit of hindsight. We demonstrate the effectiveness of our algorithm in the online portfolio selection domain where a trader has to pay proportional transaction costs every time his portfolio is updated. Our Online Lazy Updates (OLU) algorithm takes into account the transaction costs while computing an optimal portfolio which results in sparse updates to the portfolio vector. We successfully establish the robustness and scalability of our lazy portfolio selection algorithm with extensive theoretical and experimental results on two real-world datasets.


Approximate Bayesian Inference for Reconstructing Velocities of Migrating Birds from Weather Radar

AAAI Conferences

Archived data from the WSR-88D network of weather radars in the US hold detailed information about the continent-scale migratory movements of birds over the last 20 years. However, significant technical challenges must be overcome to understand this information and harness its potential for science and conservation. We present an approximate Bayesian inference algorithm to reconstruct the velocity fields of birds migrating in the vicinity of a radar station. This is part of a larger project to quantify bird migration at large scales using weather radar data.


Computational Aspects of Nearly Single-Peaked Electorates

AAAI Conferences

Manipulation, bribery, and control are well-studied ways of changing the outcome of an election. Many voting systems are, in the general case, computationally resistant to some of these manipulative actions. However when restricted to single-peaked electorates, these systems suddenly become easy to manipulate. Recently, Faliszewski, Hemaspaandra, and Hemaspaandra studied the complexity of dishonest behavior in nearly single-peaked electorates. These are electorates that are not single-peaked but close to it according to some distance measure. In this paper we introduce several new distance measures regarding single-peakedness. We prove that determining whether a given profile is nearly single-peaked is NP-complete in many cases. For one case we present a polynomial-time algorithm. Furthermore, we explore the relations between several notions of nearly single-peakedness.


A Hierarchical Aspect-Sentiment Model for Online Reviews

AAAI Conferences

To help users quickly understand the major opinions from massive online reviews, it is important to automatically reveal the latent structure of the aspects, sentiment polarities, and the association between them. However, there is little work available to do this effectively. In this paper, we propose a hierarchical aspect sentiment model (HASM) to discover a hierarchical structure of aspect-based sentiments from unlabeled online reviews. In HASM, the whole structure is a tree. Each node itself is a two-level tree, whose root represents an aspect and the children represent the sentiment polarities associated with it. Each aspect or sentiment polarity is modeled as a distribution of words. To automatically extract both the structure and parameters of the tree, we use a Bayesian nonparametric model, recursive Chinese Restaurant Process (rCRP), as the prior and jointly infer the aspect-sentiment tree from the review texts. Experiments on two real datasets show that our model is comparable to two other hierarchical topic models in terms of quantitative measures of topic trees. It is also shown that our model achieves better sentence-level classification accuracy than previously proposed aspect-sentiment joint models.


Integrating Programming by Example and Natural Language Programming

AAAI Conferences

We motivate the integration of programming by example and natural language programming by developing a system for specifying programs for simple text editing operations based on regular expressions. The programs are described with unconstrained natural language instructions, and providing one or more examples of input/output. We show that natural language allows the system to deduce the correct program much more often and much faster than is possible with the input/output example(s) alone, showing that natural language programming and programming by example can be combined in a way that overcomes the ambiguities that both methods suffer from individually, while providing a more natural interface to the user.


The Automated Acquisition of Suggestions from Tweets

AAAI Conferences

This paper targets at automatically detecting and classifying user's suggestions from tweets. The short and informal nature of tweets, along with the imbalanced characteristics of suggestion tweets, makes the task extremely challenging. To this end, we develop a classification framework on Factorization Machines, which is effective and efficient especially in classification tasks with feature sparsity settings. Moreover, we tackle the imbalance problem by introducing cost-sensitive learning techniques in Factorization Machines. Extensively experimental studies on a manually annotated real-life data set show that the proposed approach significantly improves the baseline approach, and yields the precision of 71.06% and recall of 67.86%. We also investigate the reason why Factorization Machines perform better. Finally, we introduce the first manually annotated dataset for suggestion classification.


Multi-Cycle Query Caching in Agent Programming

AAAI Conferences

In many logic-based BDI agent programming languages, plan selection involves inferencing over some underlying knowledge representation. While context-sensitive plan selection facilitates the development of flexible, declarative programs, the overhead of evaluating repeated queries to the agent's beliefs and goals can result in poor run time performance. In this paper we present an approach to multi-cycle query caching for logic-based BDI agent programming languages. We extend the abstract performance model presented in (Alechina et al. 2012) to quantify the costs and benefits of caching query results over multiple deliberation cycles. We also present results of experiments with prototype implementations of both single- and multi-cycle caching in three logic-based BDI agent platforms, which demonstrate that significant performance improvements are achievable in practice.