Country
Target Neighbor Consistent Feature Weighting for Nearest Neighbor Classification
Takeuchi, Ichiro, Sugiyama, Masashi
We consider feature selection and weighting for nearest neighbor classifiers. A technical challenge in this scenario is how to cope with the discrete update of nearest neighbors when the feature space metric is changed during the learning process. This issue, called the target neighbor change, was not properly addressed in the existing feature weighting and metric learning literature. In this paper, we propose a novel feature weighting algorithm that can exactly and efficiently keep track of the correct target neighbors via sequential quadratic programming. To the best of our knowledge, this is the first algorithm that guarantees the consistency between target neighbors and the feature space metric. We further show that the proposed algorithm can be naturally combined with regularization path tracking, allowing computationally efficient selection of the regularization parameter. We demonstrate the effectiveness of the proposed algorithm through experiments.
Generalized Lasso based Approximation of Sparse Coding for Visual Recognition
Morioka, Nobuyuki, Satoh, Shin', ichi
Sparse coding, a method of explaining sensory data with as few dictionary bases as possible, has attracted much attention in computer vision. For visual object category recognition, L1 regularized sparse coding is combined with spatial pyramid representation to obtain state-of-the-art performance. However, because of its iterative optimization, applying sparse coding onto every local feature descriptor extracted from an image database can become a major bottleneck. To overcome this computational challenge, this paper presents "Generalized Lasso based Approximation of Sparse coding" (GLAS). By representing the distribution of sparse coefficients with slice transform, we fit a piece-wise linear mapping function with generalized lasso. We also propose an efficient post-refinement procedure to perform mutual inhibition between bases which is essential for an overcomplete setting. The experiments show that GLAS obtains comparable performance to L1 regularized sparse coding, yet achieves significant speed up demonstrating its effectiveness for large-scale visual recognition problems.
Kernel Embeddings of Latent Tree Graphical Models
Song, Le, Xing, Eric P., Parikh, Ankur P.
Latent tree graphical models are natural tools for expressing long range and hierarchical dependencies among many variables which are common in computer vision, bioinformatics and natural language processing problems. However, existing models are largely restricted to discrete and Gaussian variables due to computational constraints; furthermore, algorithms for estimating the latent tree structure and learning the model parameters are largely restricted to heuristic local search. We present a method based on kernel embeddings of distributions for latent tree graphical models with continuous and non-Gaussian variables. Our method can recover the latent tree structures with provable guarantees and perform local-minimum free parameter learning and efficient inference. Experiments on simulated and real data show the advantage of our proposed approach.
An Application of Tree-Structured Expectation Propagation for Channel Decoding
Olmos, Pablo M., Salamanca, Luis, Fuentes, Juan, Pérez-Cruz, Fernando
We show an application of a tree structure for approximate inference in graphical models using the expectation propagation algorithm. These approximations are typically used over graphs with short-range cycles. We demonstrate that these approximations also help in sparse graphs with long-range loops, as the ones used in coding theory to approach channel capacity. For asymptotically large sparse graph, the expectation propagation algorithm together with the tree structure yields a completely disconnected approximation to the graphical model but, for for finite-length practical sparse graphs, the tree structure approximation to the code graph provides accurate estimates for the marginal of each variable. Furthermore, we propose a new method for constructing the tree structure on the fly that might be more amenable for sparse graphs with general factors.
Hierarchically Supervised Latent Dirichlet Allocation
Perotte, Adler J., Wood, Frank, Elhadad, Noemie, Bartlett, Nicholas
We introduce hierarchically supervised latent Dirichlet allocation (HSLDA), a model for hierarchically and multiply labeled bag-of-word data. Examples of such data include web pages and their placement in directories, product descriptions and associated categories from product hierarchies, and free-text clinical records and their assigned diagnosis codes. Out-of-sample label prediction is the primary goal of this work, but improved lower-dimensional representations of the bag-of-word data are also of interest. We demonstrate HSLDA on large-scale data from clinical document labeling and retail product categorization tasks. We show that leveraging the structure from hierarchical labels improves out-of-sample label prediction substantially when compared to models that do not.
Differentially Private M-Estimators
This paper studies privacy preserving M-estimators using perturbed histograms. The proposed approach allows the release of a wide class of M-estimators with both differential privacy and statistical utility without knowing a priori the particular inference procedure. The performance of the proposed method is demonstrated through a careful study of the convergence rates. A practical algorithm is given and applied on a real world data set containing both continuous and categorical variables.
Active Learning with a Drifting Distribution
We study the problem of active learning in a stream-based setting, allowing the distribution of the examples to change over time. We prove upper bounds on the number of prediction mistakes and number of label requests for established disagreement-based active learning algorithms, both in the realizable case and under Tsybakov noise. We further prove minimax lower bounds for this problem.
An Exact Algorithm for F-Measure Maximization
Dembczynski, Krzysztof J., Waegeman, Willem, Cheng, Weiwei, Hüllermeier, Eyke
The F-measure, originally introduced in information retrieval, is nowadays routinely used as a performance metric for problems such as binary classification, multi-label classification, and structured output prediction. Optimizing this measure remains a statistically and computationally challenging problem, since no closed-form maximizer exists. Current algorithms are approximate and typically rely on additional assumptions regarding the statistical distribution of the binary response variables. In this paper, we present an algorithm which is not only computationally efficient but also exact, regardless of the underlying distribution. The algorithm requires only a quadratic number of parameters of the joint distribution (with respect to the number of binary responses). We illustrate its practical performance by means of experimental results for multi-label classification.
Shallow vs. Deep Sum-Product Networks
Delalleau, Olivier, Bengio, Yoshua
We investigate the representational power of sum-product networks (computation networks analogous to neural networks, but whose individual units compute either products or weighted sums), through a theoretical analysis that compares deep (multiple hidden layers) vs. shallow (one hidden layer) architectures. We prove there exist families of functions that can be represented much more efficiently with a deep network than with a shallow one, i.e. with substantially fewer hidden units. Such results were not available until now, and contribute to motivate recent research involving learning of deep sum-product networks, and more generally motivate research in Deep Learning.
Predicting response time and error rates in visual search
Chen, Bo, Navalpakkam, Vidhya, Perona, Pietro
A model of human visual search is proposed. It predicts both response time (RT) and error rates (RT) as a function of image parameters such as target contrast and clutter. The model is an ideal observer, in that it optimizes the Bayes ratio of tar- get present vs target absent. The ratio is computed on the firing pattern of V1/V2 neurons, modeled by Poisson distributions. The optimal mechanism for integrat- ing information over time is shown to be a ‘soft max’ of diffusions, computed over the visual field by ‘hypercolumns’ of neurons that share the same receptive field and have different response properties to image features. An approximation of the optimal Bayesian observer, based on integrating local decisions, rather than diffusions, is also derived; it is shown experimentally to produce very similar pre- dictions. A psychophyisics experiment is proposed that may discriminate between which mechanism is used in the human brain.