Goto

Collaborating Authors

 Country


Exploiting Correlation in Sparse Signal Recovery Problems: Multiple Measurement Vectors, Block Sparsity, and Time-Varying Sparsity

arXiv.org Machine Learning

A trend in compressed sensing (CS) is to exploit structure for improved reconstruction performance. In the basic CS model, exploiting the clustering structure among nonzero elements in the solution vector has drawn much attention, and many algorithms have been proposed. However, few algorithms explicitly consider correlation within a cluster. Meanwhile, in the multiple measurement vector (MMV) model correlation among multiple solution vectors is largely ignored. Although several recently developed algorithms consider the exploitation of the correlation, these algorithms need to know a priori the correlation structure, thus limiting their effectiveness in practical problems. Recently, we developed a sparse Bayesian learning (SBL) algorithm, namely T-SBL, and its variants, which adaptively learn the correlation structure and exploit such correlation information to significantly improve reconstruction performance. Here we establish their connections to other popular algorithms, such as the group Lasso, iterative reweighted $\ell_1$ and $\ell_2$ algorithms, and algorithms for time-varying sparsity. We also provide strategies to improve these existing algorithms.


Towards OWL-based Knowledge Representation in Petrology

arXiv.org Artificial Intelligence

This paper presents our work on development of OWL-driven systems for formal representation and reasoning about terminological knowledge and facts in petrology. The long-term aim of our project is to provide solid foundations for a large-scale integration of various kinds of knowledge, including basic terms, rock classification algorithms, findings and reports. We describe three steps we have taken towards that goal here. First, we develop a semi-automated procedure for transforming a database of igneous rock samples to texts in a controlled natural language (CNL), and then a collection of OWL ontologies. Second, we create an OWL ontology of important petrology terms currently described in natural language thesauri. We describe a prototype of a tool for collecting definitions from domain experts. Third, we present an approach to formalization of current industrial standards for classification of rock samples, which requires linear equations in OWL 2. In conclusion, we discuss a range of opportunities arising from the use of semantic technologies in petrology and outline the future work in this area.


A Probabilistic Perspective on Gaussian Filtering and Smoothing

arXiv.org Artificial Intelligence

We present a general probabilistic perspective on Gaussian filtering and smoothing. This allows us to show that common approaches to Gaussian filtering/smoothing can be distinguished solely by their methods of computing/approximating the means and covariances of joint probabilities. This implies that novel filters and smoothers can be derived straightforwardly by providing methods for computing these moments. Based on this insight, we derive the cubature Kalman smoother and propose a novel robust filtering and smoothing algorithm based on Gibbs sampling.


Large-Scale Convex Minimization with a Low-Rank Constraint

arXiv.org Machine Learning

We address the problem of minimizing a convex function over the space of large matrices with low rank. While this optimization problem is hard in general, we propose an efficient greedy algorithm and derive its formal approximation guarantees. Each iteration of the algorithm involves (approximately) finding the left and right singular vectors corresponding to the largest singular value of a certain matrix, which can be calculated in linear time. This leads to an algorithm which can scale to large matrices arising in several applications such as matrix completion for collaborative filtering and robust low rank matrix approximation.


Moment based estimation of stochastic Kronecker graph parameters

arXiv.org Machine Learning

Stochastic Kronecker graphs supply a parsimonious model for large sparse real world graphs. They can specify the distribution of a large random graph using only three or four parameters. Those parameters have however proved difficult to choose in specific applications. This article looks at method of moments estimators that are computationally much simpler than maximum likelihood. The estimators are fast and in our examples, they typically yield Kronecker parameters with expected feature counts closer to a given graph than we get from KronFit. The improvement was especially prominent for the number of triangles in the graph.


Reconstruction of Epsilon-Machines in Predictive Frameworks and Decisional States

arXiv.org Machine Learning

This article introduces both a new algorithm for reconstructing epsilon-machines from data, as well as the decisional states. These are defined as the internal states of a system that lead to the same decision, based on a user-provided utility or pay-off function. The utility function encodes some a priori knowledge external to the system, it quantifies how bad it is to make mistakes. The intrinsic underlying structure of the system is modeled by an epsilon-machine and its causal states. The decisional states form a partition of the lower-level causal states that is defined according to the higher-level user's knowledge. In a complex systems perspective, the decisional states are thus the "emerging" patterns corresponding to the utility function. The transitions between these decisional states correspond to events that lead to a change of decision. The new REMAPF algorithm estimates both the epsilon-machine and the decisional states from data. Application examples are given for hidden model reconstruction, cellular automata filtering, and edge detection in images.


Hashing Algorithms for Large-Scale Learning

arXiv.org Machine Learning

In this paper, we first demonstrate that b-bit minwise hashing, whose estimators are positive definite kernels, can be naturally integrated with learning algorithms such as SVM and logistic regression. We adopt a simple scheme to transform the nonlinear (resemblance) kernel into linear (inner product) kernel; and hence large-scale problems can be solved extremely efficiently. Our method provides a simple effective solution to large-scale learning in massive and extremely high-dimensional datasets, especially when data do not fit in memory. We then compare b-bit minwise hashing with the Vowpal Wabbit (VW) algorithm (which is related the Count-Min (CM) sketch). Interestingly, VW has the same variances as random projections. Our theoretical and empirical comparisons illustrate that usually $b$-bit minwise hashing is significantly more accurate (at the same storage) than VW (and random projections) in binary data. Furthermore, $b$-bit minwise hashing can be combined with VW to achieve further improvements in terms of training speed, especially when $b$ is large.


Learning Geometrically-Constrained Hidden Markov Models for Robot Navigation: Bridging the Topological-Geometrical Gap

arXiv.org Artificial Intelligence

Hidden Markov models (HMMs) and partially observable Markov decision processes (POMDPs) provide useful tools for modeling dynamical systems. They are particularly useful for representing the topology of environments such as road networks and office buildings, which are typical for robot navigation and planning. The work presented here describes a formal framework for incorporating readily available odometric information and geometrical constraints into both the models and the algorithm that learns them. By taking advantage of such information, learning HMMs/POMDPs can be made to generate better solutions and require fewer iterations, while being robust in the face of data reduction. Experimental results, obtained from both simulated and real robot data, demonstrate the effectiveness of the approach.


Causal Network Inference via Group Sparse Regularization

arXiv.org Machine Learning

This paper addresses the problem of inferring sparse causal networks modeled by multivariate auto-regressive (MAR) processes. Conditions are derived under which the Group Lasso (gLasso) procedure consistently estimates sparse network structure. The key condition involves a "false connection score." In particular, we show that consistent recovery is possible even when the number of observations of the network is far less than the number of parameters describing the network, provided that the false connection score is less than one. The false connection score is also demonstrated to be a useful metric of recovery in non-asymptotic regimes. The conditions suggest a modified gLasso procedure which tends to improve the false connection score and reduce the chances of reversing the direction of causal influence. Computational experiments and a real network based electrocorticogram (ECoG) simulation study demonstrate the effectiveness of the approach.


Experiments with Infinite-Horizon, Policy-Gradient Estimation

arXiv.org Artificial Intelligence

In this paper, we present algorithms that perform gradient ascent of the average reward in a partially observable Markov decision process (POMDP). These algorithms are based on GPOMDP, an algorithm introduced in a companion paper (Baxter and Bartlett, this volume), which computes biased estimates of the performance gradient in POMDPs. The algorithm's chief advantages are that it uses only one free parameter beta, which has a natural interpretation in terms of bias-variance trade-off, it requires no knowledge of the underlying state, and it can be applied to infinite state, control and observation spaces. We show how the gradient estimates produced by GPOMDP can be used to perform gradient ascent, both with a traditional stochastic-gradient algorithm, and with an algorithm based on conjugate-gradients that utilizes gradient information to bracket maxima in line searches. Experimental results are presented illustrating both the theoretical results of (Baxter and Bartlett, this volume) on a toy problem, and practical aspects of the algorithms on a number of more realistic problems.