Country
An Empirical Evaluation of Similarity Measures for Time Series Classification
Serrà, Joan, Arcos, Josep Lluis
Time series are ubiquitous, and a measure to assess their similarity is a core part of many computational systems. In particular, the similarity measure is the most essential ingredient of time series clustering and classification systems. Because of this importance, countless approaches to estimate time series similarity have been proposed. However, there is a lack of comparative studies using empirical, rigorous, quantitative, and large-scale assessment strategies. In this article, we provide an extensive evaluation of similarity measures for time series classification following the aforementioned principles. We consider 7 different measures coming from alternative measure `families', and 45 publicly-available time series data sets coming from a wide variety of scientific domains. We focus on out-of-sample classification accuracy, but in-sample accuracies and parameter choices are also discussed. Our work is based on rigorous evaluation methodologies and includes the use of powerful statistical significance tests to derive meaningful conclusions. The obtained results show the equivalence, in terms of accuracy, of a number of measures, but with one single candidate outperforming the rest. Such findings, together with the followed methodology, invite researchers on the field to adopt a more consistent evaluation criteria and a more informed decision regarding the baseline measures to which new developments should be compared.
Co-clustering separately exchangeable network data
Choi, David, Wolfe, Patrick J.
This article establishes the performance of stochastic blockmodels in addressing the co-clustering problem of partitioning a binary array into subsets, assuming only that the data are generated by a nonparametric process satisfying the condition of separate exchangeability. We provide oracle inequalities with rate of convergence $\mathcal{O}_P(n^{-1/4})$ corresponding to profile likelihood maximization and mean-square error minimization, and show that the blockmodel can be interpreted in this setting as an optimal piecewise-constant approximation to the generative nonparametric model. We also show for large sample sizes that the detection of co-clusters in such data indicates with high probability the existence of co-clusters of equal size and asymptotically equivalent connectivity in the underlying generative process.
On the Estimation of Pointwise Dimension
Hidaka, Shohei, Kashyap, Neeraj
Our goal in this paper is to develop an effective estimator of fractal dimension. We survey existing ideas in dimension estimation, with a focus on the currently popular method of Grassberger and Procaccia for the estimation of correlation dimension. There are two major difficulties in estimation based on this method. The first is the insensitivity of correlation dimension itself to differences in dimensionality over data, which we term "dimension blindness". The second comes from the reliance of the method on the inference of limiting behavior from finite data. We propose pointwise dimension as an object for estimation in response to the dimension blindness of correlation dimension. Pointwise dimension is a local quantity, and the distribution of pointwise dimensions over the data contains the information to which correlation dimension is blind. We use a "limit-free" description of pointwise dimension to develop a new estimator. We conclude by discussing potential applications of our estimator as well as some challenges it raises.
Seeded Graph Matching Via Joint Optimization of Fidelity and Commensurability
Lyzinski, Vince, Adali, Sancar, Vogelstein, Joshua T., Park, Youngser, Priebe, Carey E.
We present a novel approximate graph matching algorithm that incorporates seeded data into the graph matching paradigm. Our Joint Optimization of Fidelity and Commensurability (JOFC) algorithm embeds two graphs into a common Euclidean space where the matching inference task can be performed. Through real and simulated data examples, we demonstrate the versatility of our algorithm in matching graphs with various characteristics--weightedness, directedness, loopiness, many-to-one and many-to-many matchings, and soft seedings.
Structured Priors for Sparse-Representation-Based Hyperspectral Image Classification
Sun, Xiaoxia, Qu, Qing, Nasrabadi, Nasser M., Tran, Trac D.
Pixel-wise classification, where each pixel is assigned to a predefined class, is one of the most important procedures in hyperspectral image (HSI) analysis. By representing a test pixel as a linear combination of a small subset of labeled pixels, a sparse representation classifier (SRC) gives rather plausible results compared with that of traditional classifiers such as the support vector machine (SVM). Recently, by incorporating additional structured sparsity priors, the second generation SRCs have appeared in the literature and are reported to further improve the performance of HSI. These priors are based on exploiting the spatial dependencies between the neighboring pixels, the inherent structure of the dictionary, or both. In this paper, we review and compare several structured priors for sparse-representation-based HSI classification. We also propose a new structured prior called the low rank group prior, which can be considered as a modification of the low rank prior. Furthermore, we will investigate how different structured priors improve the result for the HSI classification.
Coordinate Descent with Online Adaptation of Coordinate Frequencies
Glasmachers, Tobias, Dogan, Ürün
Coordinate descent (CD) algorithms have become the method of choice for solving a number of optimization problems in machine learning. They are particularly popular for training linear models, including linear support vector machine classification, LASSO regression, and logistic regression. We consider general CD with non-uniform selection of coordinates. Instead of fixing selection frequencies beforehand we propose an online adaptation mechanism for this important parameter, called the adaptive coordinate frequencies (ACF) method. This mechanism removes the need to estimate optimal coordinate frequencies beforehand, and it automatically reacts to changing requirements during an optimization run. We demonstrate the usefulness of our ACF-CD approach for a variety of optimization problems arising in machine learning contexts. Our algorithm offers significant speed-ups over state-of-the-art training methods.
Efficient Planning under Uncertainty with Macro-actions
He, Ruijie, Brunskill, Emma, Roy, Nicholas
Deciding how to act in partially observable environments remains an active area of research. Identifying good sequences of decisions is particularly challenging when good control performance requires planning multiple steps into the future in domains with many states. Towards addressing this challenge, we present an online, forward-search algorithm called the Posterior Belief Distribution (PBD). PBD leverages a novel method for calculating the posterior distribution over beliefs that result after a sequence of actions is taken, given the set of observation sequences that could be received during this process. This method allows us to efficiently evaluate the expected reward of a sequence of primitive actions, which we refer to as macro-actions. We present a formal analysis of our approach, and examine its performance on two very large simulation experiments: scientific exploration and a target monitoring domain. We also demonstrate our algorithm being used to control a real robotic helicopter in a target monitoring experiment, which suggests that our approach has practical potential for planning in real-world, large partially observable domains where a multi-step lookahead is required to achieve good performance.
Completeness and Performance Of The APO Algorithm
Grinshpoun, Tal, Meisels, Amnon
Asynchronous Partial Overlay (APO) is a search algorithm that uses cooperative mediation to solve Distributed Constraint Satisfaction Problems (DisCSPs). The algorithm partitions the search into different subproblems of the DisCSP. The original proof of completeness of the APO algorithm is based on the growth of the size of the subproblems. The present paper demonstrates that this expected growth of subproblems does not occur in some situations, leading to a termination problem of the algorithm. The problematic parts in the APO algorithm that interfere with its completeness are identified and necessary modifications to the algorithm that fix these problematic parts are given. The resulting version of the algorithm, Complete Asynchronous Partial Overlay (CompAPO), ensures its completeness. Formal proofs for the soundness and completeness of CompAPO are given. A detailed performance evaluation of CompAPO comparing it to other DisCSP algorithms is presented, along with an extensive experimental evaluation of the algorithm's unique behavior. Additionally, an optimization version of the algorithm, CompOptAPO, is presented, discussed, and evaluated.
Solving #SAT and Bayesian Inference with Backtracking Search
Bacchus, Fahiem, Dalmao, Shannon, Pitassi, Toniann
Inference in Bayes Nets (BAYES) is an important problem with numerous applications in probabilistic reasoning. Counting the number of satisfying assignments of a propositional formula (#SAT) is a closely related problem of fundamental theoretical importance. Both these problems, and others, are members of the class of sum-of-products (SUMPROD) problems. In this paper we show that standard backtracking search when augmented with a simple memoization scheme (caching) can solve any sum-of-products problem with time complexity that is at least as good any other state-of-the-art exact algorithm, and that it can also achieve the best known time-space tradeoff. Furthermore, backtracking's ability to utilize more flexible variable orderings allows us to prove that it can achieve an exponential speedup over other standard algorithms for SUMPROD on some instances. The ideas presented here have been utilized in a number of solvers that have been applied to various types of sum-of-product problems. These system's have exploited the fact that backtracking can naturally exploit more of the problem's structure to achieve improved performance on a range of probleminstances. Empirical evidence of this performance gain has appeared in published works describing these solvers, and we provide references to these works.
Interactive Cost Configuration Over Decision Diagrams
Andersen, Henrik Reif, Hadzic, Tarik, Pisinger, David
In many AI domains such as product configuration, a user should interactively specify a solution that must satisfy a set of constraints. In such scenarios, offline compilation of feasible solutions into a tractable representation is an important approach to delivering efficient backtrack-free user interaction online. In particular,binary decision diagrams (BDDs) have been successfully used as a compilation target for product and service configuration. In this paper we discuss how to extend BDD-based configuration to scenarios involving cost functions which express user preferences. We first show that an efficient, robust and easy to implement extension is possible if the cost function is additive, and feasible solutions are represented using multi-valued decision diagrams (MDDs). We also discuss the effect on MDD size if the cost function is non-additive or if it is encoded explicitly into MDD. We then discuss interactive configuration in the presence of multiple cost functions. We prove that even in its simplest form, multiple-cost configuration is NP-hard in the input MDD. However, for solving two-cost configuration we develop a pseudo-polynomial scheme and a fully polynomial approximation scheme. The applicability of our approach is demonstrated through experiments over real-world configuration models and product-catalogue datasets. Response times are generally within a fraction of a second even for very large instances.