Goto

Collaborating Authors

 Country


A Sampled Texture Prior for Image Super-Resolution

Neural Information Processing Systems

Super-resolution aims to produce a high-resolution image from a set of one or more low-resolution images by recovering or inventing plausible high-frequency image content. Typical approaches try to reconstruct a high-resolution image using the sub-pixel displacements of several lowresolution images, usually regularized by a generic smoothness prior over the high-resolution image space. Other methods use training data to learn low-to-high-resolution matches, and have been highly successful even in the single-input-image case. Here we present a domain-specific image prior in the form of a p.d.f.


Probability Estimates for Multi-Class Classification by Pairwise Coupling

Neural Information Processing Systems

Pairwise coupling is a popular multi-class classification method that combines together all pairwise comparisons for each pair of classes. This paper presents two approaches for obtaining class probabilities. Both methods can be reduced to linear systems and are easy to implement. We show conceptually and experimentally that the proposed approaches are more stable than two existing popular methods: voting and [3].


A Biologically Plausible Algorithm for Reinforcement-shaped Representational Learning

Neural Information Processing Systems

Significant plasticity in sensory cortical representations can be driven in mature animals either by behavioural tasks that pair sensory stimuli with reinforcement, or by electrophysiological experiments that pair sensory input with direct stimulation of neuromodulatory nuclei, but usually not by sensory stimuli presented alone. Biologically motivated theories of representational learning, however, have tended to focus on unsupervised mechanisms, which may play a significant role on evolutionary or developmental timescales, but which neglect this essential role of reinforcement in adult plasticity. By contrast, theoretical reinforcement learning has generally dealt with the acquisition of optimal policies for action in an uncertain world, rather than with the concurrent shaping of sensory representations. This paper develops a framework for representational learning which builds on the relative success of unsupervised generativemodelling accounts of cortical encodings to incorporate the effects of reinforcement in a biologically plausible way.


Information Maximization in Noisy Channels : A Variational Approach

Neural Information Processing Systems

The maximisation of information transmission over noisy channels is a common, albeit generally computationally difficult problem. We approach the difficulty of computing the mutual information for noisy channels by using a variational approximation. The resulting IM algorithm is analagous to the EM algorithm, yet maximises mutual information, as opposed to likelihood. We apply the method to several practical examples, including linear compression, population encoding and CDMA.



Eye Micro-movements Improve Stimulus Detection Beyond the Nyquist Limit in the Peripheral Retina

Neural Information Processing Systems

Even under perfect fixation the human eye is under steady motion (tremor, microsaccades, slow drift). The "dynamic" theory of vision [1,2] states that eye-movements can improve hyperacuity.



GPPS: A Gaussian Process Positioning System for Cellular Networks

Neural Information Processing Systems

In this article, we present a novel approach to solving the localization problem in cellular networks. The goal is to estimate a mobile user's position, based on measurements of the signal strengths received from network base stations. Our solution works by building Gaussian process models for the distribution of signal strengths, as obtained in a series of calibration measurements. In the localization stage, the user's position canbe estimated by maximizing the likelihood of received signal strengths with respect to the position. We investigate the accuracy of the proposed approach on data obtained within a large indoor cellular network.


Using the Forest to See the Trees: A Graphical Model Relating Features, Objects, and Scenes

Neural Information Processing Systems

Standard approaches to object detection focus on local patches of the image, and try to classify them as background or not. We propose to use the scene context (image as a whole) as an extra source of (global) information, to help resolve local ambiguities. We present a conditional random field for jointly solving the tasks of object detection and scene classification.


Fast Embedding of Sparse Similarity Graphs

Neural Information Processing Systems

This paper applies fast sparse multidimensional scaling (MDS) to a large graph of music similarity, with 267K vertices that represent artists, albums, and tracks; and 3.22M edges that represent similarity between those entities. Once vertices are assigned locations in a Euclidean space, the locations can be used to browse music and to generate playlists. MDS on very large sparse graphs can be effectively performed by a family of algorithms called Rectangular Dijsktra (RD) MDS algorithms. These RD algorithms operate on a dense rectangular slice of the distance matrix, created by calling Dijsktra a constant number of times. Two RD algorithms are compared: Landmark MDS, which uses the Nyström approximation to perform MDS; and a new algorithm called Fast Sparse Embedding, which uses FastMap. These algorithms compare favorably to Laplacian Eigenmaps, both in terms of speed and embedding quality.