Goto

Collaborating Authors

 Country



A Rigorous Analysis of Linsker-type Hebbian Learning

Neural Information Processing Systems

We propose a novel rigorous approach for the analysis of Linsker's unsupervised Hebbian learning network. The behavior of this model is determined by the underlying nonlinear dynamics which are parameterized by a set of parameters originating from the Hebbian rule and the arbor density of the synapses. These parameters determine the presence or absence of a specific receptive field (also referred to as a'connection pattern') as a saturated fixed point attractor of the model. In this paper, we perform a qualitative analysis of the underlying nonlinear dynamics over the parameter space, determine the effects of the system parameters on the emergence of various receptive fields, and predict precisely within which parameter regime the network will have the potential to develop a specially designated connection pattern. In particular, this approach exposes, for the first time, the crucial role played by the synaptic density functions, and provides a complete precise picture of the parameter space that defines the relationships among the different receptive fields. Our theoretical predictions are confirmed by numerical simulations.


Inferring Ground Truth from Subjective Labelling of Venus Images

Neural Information Processing Systems

Instead of "ground truth" one may only have the subjective opinion(s) of one or more experts. For example, medical data or image data may be collected off-line and some time later a set of experts analyze the data and produce a set of class labels. The central problem is that of trying to infer the "ground truth" given the noisy subjective estimates of the experts. When one wishes to apply a supervised learning algorithm to the data, the problem is primarily twofold: (i) how to evaluate the relative performance of experts and algorithms, and (ii) how to train a pattern recognition system in the absence of absolute ground truth. In this paper we focus on problem (i), namely the performance evaluation issue, and in particular we discuss the application of a particular modelling technique to the problem of counting volcanoes on the surface of Venus.



Reinforcement Learning Algorithm for Partially Observable Markov Decision Problems

Neural Information Processing Systems

Increasing attention has been paid to reinforcement learning algorithms in recent years, partly due to successes in the theoretical analysis of their behavior in Markov environments. If the Markov assumption is removed, however, neither generally the algorithms nor the analyses continue to be usable. We propose and analyze a new learning algorithm to solve a certain class of non-Markov decision problems. Our algorithm applies to problems in which the environment is Markov, but the learner has restricted access to state information. The algorithm involves a Monte-Carlo policy evaluation combined with a policy improvement method that is similar to that of Markov decision problems and is guaranteed to converge to a local maximum. The algorithm operates in the space of stochastic policies, a space which can yield a policy that performs considerably better than any deterministic policy. Although the space of stochastic policies is continuous-even for a discrete action space-our algorithm is computationally tractable.


A Lagrangian Formulation For Optical Backpropagation Training In Kerr-Type Optical Networks

Neural Information Processing Systems

A training method based on a form of continuous spatially distributed optical error back-propagation is presented for an all optical network composed of nondiscrete neurons and weighted interconnections. The all optical network is feed-forward and is composed of thin layers of a Kerrtype self focusing/defocusing nonlinear optical material. The training method is derived from a Lagrangian formulation of the constrained minimization of the network error at the output. This leads to a formulation that describes training as a calculation of the distributed error of the optical signal at the output which is then reflected back through the device to assign a spatially distributed error to the internal layers. This error is then used to modify the internal weighting values. Results from several computer simulations of the training are presented, and a simple optical table demonstration of the network is discussed.


SIMPLIFYING NEURAL NETS BY DISCOVERING FLAT MINIMA

Neural Information Processing Systems

We present a new algorithm for finding low complexity networks with high generalization capability. The algorithm searches for large connected regions of so-called ''fiat'' minima of the error function. In the weight-space environment of a "flat" minimum, the error remains approximately constant. Using an MDL-based argument, flat minima can be shown to correspond to low expected overfitting. Although our algorithm requires the computation of second order derivatives, it has backprop's order of complexity. Experiments with feedforward and recurrent nets are described. In an application to stock market prediction, the method outperforms conventional backprop, weight decay, and "optimal brain surgeon".


The Electrotonic Transformation: a Tool for Relating Neuronal Form to Function

Neural Information Processing Systems

The spatial distribution and time course of electrical signals in neurons have important theoretical and practical consequences. Because it is difficult to infer how neuronal form affects electrical signaling, we have developed a quantitative yet intuitive approach to the analysis of electrotonus. This approach transforms the architecture of the cell from anatomical to electrotonic space, using the logarithm of voltage attenuation as the distance metric. We describe the theory behind this approach and illustrate its use. 1 INTRODUCTION The fields of computational neuroscience and artificial neural nets have enjoyed a mutually beneficial exchange of ideas. This has been most evident at the network level, where concepts such as massive parallelism, lateral inhibition, and recurrent excitation have inspired both the analysis of brain circuits and the design of artificial neural net architectures. Less attention has been given to how properties of the individual neurons or processing elements contribute to network function. Biological neurons and brain circuits have 70 Nicholas Carnevale, Kenneth Y. Tsai, Brenda J. Claiborne, Thomas H. Brown


Learning Stochastic Perceptrons Under k-Blocking Distributions

Neural Information Processing Systems

Such distributions represent an important stepbeyond the case where each input variable is statistically independent since the 2k-blocking family contains all the Markov distributions of order k. By stochastic perceptron we mean a perceptron which,upon presentation of input vector x, outputs 1 with probability fCLJi WiXi - B).


A Comparison of Discrete-Time Operator Models for Nonlinear System Identification

Neural Information Processing Systems

We present a unifying view of discrete-time operator models used in the context of finite word length linear signal processing. Comparisons are made between the recently presented gamma operator model, and the delta and rho operator models for performing nonlinear system identification and prediction using neural networks. A new model based on an adaptive bilinear transformation which generalizes all of the above models is presented.