Goto

Collaborating Authors

 Country


Dissimilarity-based Ensembles for Multiple Instance Learning

arXiv.org Machine Learning

In multiple instance learning, objects are sets (bags) of feature vectors (instances) rather than individual feature vectors. In this paper we address the problem of how these bags can best be represented. Two standard approaches are to use (dis)similarities between bags and prototype bags, or between bags and prototype instances. The first approach results in a relatively low-dimensional representation determined by the number of training bags, while the second approach results in a relatively high-dimensional representation, determined by the total number of instances in the training set. In this paper a third, intermediate approach is proposed, which links the two approaches and combines their strengths. Our classifier is inspired by a random subspace ensemble, and considers subspaces of the dissimilarity space, defined by subsets of instances, as prototypes. We provide guidelines for using such an ensemble, and show state-of-the-art performances on a range of multiple instance learning problems.


Demystifying Information-Theoretic Clustering

arXiv.org Machine Learning

We propose a novel method for clustering data which is grounded in information-theoretic principles and requires no parametric assumptions. Previous attempts to use information theory to define clusters in an assumption-free way are based on maximizing mutual information between data and cluster labels. We demonstrate that this intuition suffers from a fundamental conceptual flaw that causes clustering performance to deteriorate as the amount of data increases. Instead, we return to the axiomatic foundations of information theory to define a meaningful clustering measure based on the notion of consistency under coarse-graining for finite data.


Linear and Parallel Learning of Markov Random Fields

arXiv.org Machine Learning

We introduce a new embarrassingly parallel parameter learning algorithm for Markov random fields with untied parameters which is efficient for a large class of practical models. Our algorithm parallelizes naturally over cliques and, for graphs of bounded degree, its complexity is linear in the number of cliques. Unlike its competitors, our algorithm is fully parallel and for log-linear models it is also data efficient, requiring only the local sufficient statistics of the data to estimate parameters.


An SIR Graph Growth Model for the Epidemics of Communicable Diseases

arXiv.org Machine Learning

It is the main purpose of this paper to introduce a graph-valued stochastic process in order to model the spread of a communicable infectious disease. The major novelty of the SIR model we promote lies in the fact that the social network on which the epidemics is taking place is not specified in advance but evolves through time, accounting for the temporal evolution of the interactions involving infective individuals. Without assuming the existence of a fixed underlying network model, the stochastic process introduced describes, in a flexible and realistic manner, epidemic spread in non-uniformly mixing and possibly heterogeneous populations. It is shown how to fit such a (parametrised) model by means of Approximate Bayesian Computation methods based on graph-valued statistics. The concepts and statistical methods described in this paper are finally applied to a real epidemic dataset, related to the spread of HIV in Cuba in presence of a contact tracing system, which permits one to reconstruct partly the evolution of the graph of sexual partners diagnosed HIV positive between 1986 and 2006.


Discovering Latent Network Structure in Point Process Data

arXiv.org Machine Learning

Networks play a central role in modern data analysis, enabling us to reason about systems by studying the relationships between their parts. Most often in network analysis, the edges are given. However, in many systems it is difficult or impossible to measure the network directly. Examples of latent networks include economic interactions linking financial instruments and patterns of reciprocity in gang violence. In these cases, we are limited to noisy observations of events associated with each node. To enable analysis of these implicit networks, we develop a probabilistic model that combines mutually-exciting point processes with random graph models. We show how the Poisson superposition principle enables an elegant auxiliary variable formulation and a fully-Bayesian, parallel inference algorithm. We evaluate this new model empirically on several datasets.


Consistency of Causal Inference under the Additive Noise Model

arXiv.org Machine Learning

We analyze a family of methods for statistical causal inference from sample under the so-called Additive Noise Model. While most work on the subject has concentrated on establishing the soundness of the Additive Noise Model, the statistical consistency of the resulting inference methods has received little attention. We derive general conditions under which the given family of inference methods consistently infers the causal direction in a nonparametric setting.


Sequential Model-Based Ensemble Optimization

arXiv.org Machine Learning

One of the most tedious tasks in the application of machine learning is model selection, i.e. hyperparameter selection. Fortunately, recent progress has been made in the automation of this process, through the use of sequential model-based optimization (SMBO) methods. This can be used to optimize a cross-validation performance of a learning algorithm over the value of its hyperparameters. However, it is well known that ensembles of learned models almost consistently outperform a single model, even if properly selected. In this paper, we thus propose an extension of SMBO methods that automatically constructs such ensembles. This method builds on a recently proposed ensemble construction paradigm known as agnostic Bayesian learning. In experiments on 22 regression and 39 classification data sets, we confirm the success of this proposed approach, which is able to outperform model selection with SMBO.


Learning Ordered Representations with Nested Dropout

arXiv.org Machine Learning

In this paper, we study ordered representations of data in which different dimensions have different degrees of importance. To learn these representations we introduce nested dropout, a procedure for stochastically removing coherent nested sets of hidden units in a neural network. We first present a sequence of theoretical results in the simple case of a semi-linear autoencoder. We rigorously show that the application of nested dropout enforces identifiability of the units, which leads to an exact equivalence with PCA. We then extend the algorithm to deep models and demonstrate the relevance of ordered representations to a number of applications. Specifically, we use the ordered property of the learned codes to construct hash-based data structures that permit very fast retrieval, achieving retrieval in time logarithmic in the database size and independent of the dimensionality of the representation. This allows codes that are hundreds of times longer than currently feasible for retrieval. We therefore avoid the diminished quality associated with short codes, while still performing retrieval that is competitive in speed with existing methods. We also show that ordered representations are a promising way to learn adaptive compression for efficient online data reconstruction.


Jointly Clustering Rows and Columns of Binary Matrices: Algorithms and Trade-offs

arXiv.org Machine Learning

In standard clustering problems, data points are represented by vectors, and by stacking them together, one forms a data matrix with row or column cluster structure. In this paper, we consider a class of binary matrices, arising in many applications, which exhibit both row and column cluster structure, and our goal is to exactly recover the underlying row and column clusters by observing only a small fraction of noisy entries. We first derive a lower bound on the minimum number of observations needed for exact cluster recovery. Then, we propose three algorithms with different running time and compare the number of observations needed by them for successful cluster recovery. Our analytical results show smooth time-data trade-offs: one can gradually reduce the computational complexity when increasingly more observations are available.


Corrupted Sensing: Novel Guarantees for Separating Structured Signals

arXiv.org Machine Learning

We study the problem of corrupted sensing, a generalization of compressed sensing in which one aims to recover a signal from a collection of corrupted or unreliable measurements. While an arbitrary signal cannot be recovered in the face of arbitrary corruption, tractable recovery is possible when both signal and corruption are suitably structured. We quantify the relationship between signal recovery and two geometric measures of structure, the Gaussian complexity of a tangent cone and the Gaussian distance to a subdifferential. We take a convex programming approach to disentangling signal and corruption, analyzing both penalized programs that trade off between signal and corruption complexity, and constrained programs that bound the complexity of signal or corruption when prior information is available. In each case, we provide conditions for exact signal recovery from structured corruption and stable signal recovery from structured corruption with added unstructured noise. Our simulations demonstrate close agreement between our theoretical recovery bounds and the sharp phase transitions observed in practice. In addition, we provide new interpretable bounds for the Gaussian complexity of sparse vectors, block-sparse vectors, and low-rank matrices, which lead to sharper guarantees of recovery when combined with our results and those in the literature.