Country
Sparse PCA through Low-rank Approximations
Papailiopoulos, Dimitris S., Dimakis, Alexandros G., Korokythakis, Stavros
We introduce a novel algorithm that computes the $k$-sparse principal component of a positive semidefinite matrix $A$. Our algorithm is combinatorial and operates by examining a discrete set of special vectors lying in a low-dimensional eigen-subspace of $A$. We obtain provable approximation guarantees that depend on the spectral decay profile of the matrix: the faster the eigenvalue decay, the better the quality of our approximation. For example, if the eigenvalues of $A$ follow a power-law decay, we obtain a polynomial-time approximation algorithm for any desired accuracy. A key algorithmic component of our scheme is a combinatorial feature elimination step that is provably safe and in practice significantly reduces the running complexity of our algorithm. We implement our algorithm and test it on multiple artificial and real data sets. Due to the feature elimination step, it is possible to perform sparse PCA on data sets consisting of millions of entries in a few minutes. Our experimental evaluation shows that our scheme is nearly optimal while finding very sparse vectors. We compare to the prior state of the art and show that our scheme matches or outperforms previous algorithms in all tested data sets.
Training Restricted Boltzmann Machine by Perturbation
Ravanbakhsh, Siamak, Greiner, Russell, Frey, Brendan
A new approach to maximum likelihood learning of discrete graphical models and RBM in particular is introduced. Our method, Perturb and Descend (PD) is inspired by two ideas (I) perturb and MAP method for sampling (II) learning by Contrastive Divergence minimization. In contrast to perturb and MAP, PD leverages training data to learn the models that do not allow efficient MAP estimation. During the learning, to produce a sample from the current model, we start from a training data and descend in the energy landscape of the "perturbed model", for a fixed number of steps, or until a local optima is reached. For RBM, this involves linear calculations and thresholding which can be very fast. Furthermore we show that the amount of perturbation is closely related to the temperature parameter and it can regularize the model by producing robust features resulting in sparse hidden layer activation.
Understanding Protein Dynamics with L1-Regularized Reversible Hidden Markov Models
McGibbon, Robert T., Ramsundar, Bharath, Sultan, Mohammad M., Kiss, Gert, Pande, Vijay S.
We present a machine learning framework for modeling protein dynamics. Our approach uses L1-regularized, reversible hidden Markov models to understand large protein datasets generated via molecular dynamics simulations. Our model is motivated by three design principles: (1) the requirement of massive scalability; (2) the need to adhere to relevant physical law; and (3) the necessity of providing accessible interpretations, critical for both cellular biology and rational drug design. We present an EM algorithm for learning and introduce a model selection criteria based on the physical notion of convergence in relaxation timescales. We contrast our model with standard methods in biophysics and demonstrate improved robustness. We implement our algorithm on GPUs and apply the method to two large protein simulation datasets generated respectively on the NCSA Bluewaters supercomputer and the Folding@Home distributed computing network. Our analysis identifies the conformational dynamics of the ubiquitin protein critical to cellular signaling, and elucidates the stepwise activation mechanism of the c-Src kinase protein.
A Structural Approach to Coordinate-Free Statistics
LaGatta, Tom, Hahn, P. Richard
We consider the question of learning in general topological vector spaces. By exploiting known (or parametrized) covariance structures, our Main Theorem demonstrates that any continuous linear map corresponds to a certain isomorphism of embedded Hilbert spaces. By inverting this isomorphism and extending continuously, we construct a version of the Ordinary Least Squares estimator in absolute generality. Our Gauss-Markov theorem demonstrates that OLS is a "best linear unbiased estimator", extending the classical result. We construct a stochastic version of the OLS estimator, which is a continuous disintegration exactly for the class of "uncorrelated implies independent" (UII) measures. As a consequence, Gaussian measures always exhibit continuous disintegrations through continuous linear maps, extending a theorem of the first author. Applying this framework to some problems in machine learning, we prove a useful representation theorem for covariance tensors, and show that OLS defines a good kriging predictor for vector-valued arrays on general index spaces. We also construct a support-vector machine classifier in this setting. We hope that our article shines light on some deeper connections between probability theory, statistics and machine learning, and may serve as a point of intersection for these three communities.
Ridge Fusion in Statistical Learning
Price, Bradley S., Geyer, Charles J., Rothman, Adam J.
We propose a penalized likelihood method to jointly estimate multiple precision matrices for use in quadratic discriminant analysis and model based clustering. A ridge penalty and a ridge fusion penalty are used to introduce shrinkage and promote similarity between precision matrix estimates. Block-wise coordinate descent is used for optimization, and validation likelihood is used for tuning parameter selection. Our method is applied in quadratic discriminant analysis and semi-supervised model based clustering.
Nested Hierarchical Dirichlet Processes
Paisley, John, Wang, Chong, Blei, David M., Jordan, Michael I.
We develop a nested hierarchical Dirichlet process (nHDP) for hierarchical topic modeling. The nHDP is a generalization of the nested Chinese restaurant process (nCRP) that allows each word to follow its own path to a topic node according to a document-specific distribution on a shared tree. This alleviates the rigid, single-path formulation of the nCRP, allowing a document to more easily express thematic borrowings as a random effect. We derive a stochastic variational inference algorithm for the model, in addition to a greedy subtree selection method for each document, which allows for efficient inference using massive collections of text documents. We demonstrate our algorithm on 1.8 million documents from The New York Times and 3.3 million documents from Wikipedia.
Markov Blanket Ranking using Kernel-based Conditional Dependence Measures
Strobl, Eric V., Visweswaran, Shyam
Developing feature selection algorithms that move beyond a pure correlational to a more causal analysis of observational data is an important problem in the sciences. Several algorithms attempt to do so by discovering the Markov blanket of a target, but they all contain a forward selection step which variables must pass in order to be included in the conditioning set. As a result, these algorithms may not consider all possible conditional multivariate combinations. We improve on this limitation by proposing a backward elimination method that uses a kernel-based conditional dependence measure to identify the Markov blanket in a fully multivariate fashion. The algorithm is easy to implement and compares favorably to other methods on synthetic and real datasets.
A Rank-SVM Approach to Anomaly Detection
Qian, Jing, Root, Jonathan, Saligrama, Venkatesh, Chen, Yuting
We propose a novel non-parametric adaptive anomaly detection algorithm for high dimensional data based on rank-SVM. Data points are first ranked based on scores derived from nearest neighbor graphs on n-point nominal data. We then train a rank-SVM using this ranked data. A test-point is declared as an anomaly at alpha-false alarm level if the predicted score is in the alpha-percentile. The resulting anomaly detector is shown to be asymptotically optimal and adaptive in that for any false alarm rate alpha, its decision region converges to the alpha-percentile level set of the unknown underlying density. In addition we illustrate through a number of synthetic and real-data experiments both the statistical performance and computational efficiency of our anomaly detector.
Extension-based Semantics of Abstract Dialectical Frameworks
One of the most prominent tools for abstract argumentation is the Dung's framework, AF for short. It is accompanied by a variety of semantics including grounded, complete, preferred and stable. Although powerful, AFs have their shortcomings, which led to development of numerous enrichments. Among the most general ones are the abstract dialectical frameworks, also known as the ADFs. They make use of the so-called acceptance conditions to represent arbitrary relations. This level of abstraction brings not only new challenges, but also requires addressing existing problems in the field. One of the most controversial issues, recognized not only in argumentation, concerns the support cycles. In this paper we introduce a new method to ensure acyclicity of the chosen arguments and present a family of extension-based semantics built on it. We also continue our research on the semantics that permit cycles and fill in the gaps from the previous works. Moreover, we provide ADF versions of the properties known from the Dung setting. Finally, we also introduce a classification of the developed sub-semantics and relate them to the existing labeling-based approaches.