Country
Population Decoding Based on an Unfaithful Model
Wu, Si, Nakahara, Hiroyuki, Murata, Noboru, Amari, Shun-ichi
We study a population decoding paradigm in which the maximum likelihood inferenceis based on an unfaithful decoding model (UMLI). This is usually the case for neural population decoding because the encoding process of the brain is not exactly known, or because a simplified decoding modelis preferred for saving computational cost. We consider an unfaithful decoding model which neglects the pairwise correlation between neuronal activities, and prove that UMLI is asymptotically efficient whenthe neuronal correlation is uniform or of limited-range. The performance of UMLI is compared with that of the maximum likelihood inference based on a faithful model and that of the center of mass decoding method.It turns out that UMLI has advantages of decreasing the computational complexity remarkablely and maintaining a high-level decoding accuracy at the same time. The effect of correlation on the decoding accuracy is also discussed.
Local Probability Propagation for Factor Analysis
Ever since Pearl's probability propagation algorithm in graphs with cycles was shown to produce excellent results for error-correcting decoding a few years ago, we have been curious about whether local probability propagation could be used successfully for machine learning.One of the simplest adaptive models is the factor analyzer, which is a two-layer network that models bottom layer sensory inputs as a linear combination of top layer factors plus independent Gaussiansensor noise. We show that local probability propagation in the factor analyzer network usually takes just a few iterations to perform accurate inference, even in networks with 320 sensors and 80 factors. We derive an expression for the algorithm's fixed point and show that this fixed point matches the exact solution ina variety of networks, even when the fixed point is unstable.
Image Representations for Facial Expression Coding
Bartlett, Marian Stewart, Donato, Gianluca, Movellan, Javier R., Hager, Joseph C., Ekman, Paul, Sejnowski, Terrence J.
The Facial Action Coding System (FACS) (9) is an objective method for quantifying facial movement in terms of component actions. This system is widely used in behavioral investigations of emotion, cognitive processes, and social interaction. The coding ispresently performed by highly trained human experts. This paper explores and compares techniques for automatically recognizing facialactions in sequences of images. These methods include unsupervised learning techniques for finding basis images such as principal component analysis, independent component analysis and local feature analysis, and supervised learning techniques such as Fisher's linear discriminants.
Building Predictive Models from Fractal Representations of Symbolic Sequences
We propose a novel approach for building finite memory predictive models similarin spirit to variable memory length Markov models (VLMMs). The models are constructed by first transforming the n-block structure of the training sequence into a spatial structure of points in a unit hypercube, such that the longer is the common suffix shared by any two n-blocks, the closer lie their point representations. Such a transformation embodies a Markov assumption - n-blocks with long common suffixes are likely to produce similar continuations. Finding a set of prediction contexts is formulated as a resource allocation problem solved by vector quantizing the spatial n-block representation. We compare our model with both the classical and variable memory length Markov models on three data sets with different memory and stochastic components. Our models have a superior performance, yet, their construction is fully automatic, which is shown to be problematic in the case of VLMMs.
Coastal Navigation with Mobile Robots
Roy, Nicholas, Thrun, Sebastian
The problem that we address in this paper is how a mobile robot can plan in order to arrive at its goal with minimum uncertainty. Traditional motion planning algorithms oftenassume that a mobile robot can track its position reliably, however, in real world situations, reliable localization may not always be feasible. Partially Observable Markov Decision Processes (POMDPs) provide one way to maximize the certainty of reaching the goal state, but at the cost of computational intractability for large state spaces. The method we propose explicitly models the uncertainty of the robot's position as a state variable, and generates trajectories through the augmented pose-uncertainty space. By minimizing the positional uncertainty at the goal, the robot reduces the likelihood it becomes lost. We demonstrate experimentally that coastal navigation reduces the uncertainty at the goal, especially with degraded localization.