Goto

Collaborating Authors

 Country


Classification on Pairwise Proximity Data

Neural Information Processing Systems

We investigate the problem of learning a classification task on data represented in terms of their pairwise proximities. This representation doesnot refer to an explicit feature representation of the data items and is thus more general than the standard approach of using Euclideanfeature vectors, from which pairwise proximities can always be calculated. Our first approach is based on a combined linear embedding and classification procedure resulting in an extension ofthe Optimal Hyperplane algorithm to pseudo-Euclidean data. As an alternative we present another approach based on a linear threshold model in the proximity values themselves, which is optimized using Structural Risk Minimization. We show that prior knowledge about the problem can be incorporated by the choice of distance measures and examine different metrics W.r.t.


Controlling the Complexity of HMM Systems by Regularization

Neural Information Processing Systems

This paper introduces a method for regularization ofHMM systems that avoids parameter overfitting caused by insufficient training data. Regularization isdone by augmenting the EM training method by a penalty term that favors simple and smooth HMM systems. The penalty term is constructed as a mixture model of negative exponential distributions that is assumed to generate the state dependent emission probabilities of the HMMs. This new method is the successful transfer of a well known regularization approach in neural networks to the HMM domain and can be interpreted as a generalization of traditional state-tying for HMM systems. Theeffect of regularization is demonstrated for continuous speech recognition tasks by improving overfitted triphone models and by speaker adaptation with limited training data. 1 Introduction One general problem when constructing statistical pattern recognition systems is to ensure the capability to generalize well, i.e. the system must be able to classify data that is not contained in the training data set.


Mean Field Methods for Classification with Gaussian Processes

Neural Information Processing Systems

We discuss the application of TAP mean field methods known from the Statistical Mechanics of disordered systems to Bayesian classification modelswith Gaussian processes. In contrast to previous approaches, noknowledge about the distribution of inputs is needed. Simulation results for the Sonar data set are given. They have been recently introduced into the Neural Computation community (Neal 1996, Williams & Rasmussen 1996, Mackay 1997). If we assume fields with zero prior mean, the statistics of h is entirely defined by the second order correlations C(s, S') E[h(s)h(S')], where E denotes expectations 310 MOpper and 0. Winther with respect to the prior.


Semi-Supervised Support Vector Machines

Neural Information Processing Systems

We introduce a semi-supervised support vector machine (S3yM) method. Given a training set of labeled data and a working set of unlabeled data, S3YM constructs a support vector machine using boththe training and working sets. We use S3 YM to solve the transduction problem using overall risk minimization (ORM) posed by Yapnik. The transduction problem is to estimate the value of a classification function at the given points in the working set. This contrasts with the standard inductive learning problem of estimating the classification function at all possible values and then using the fixed function to deduce the classes of the working set data.


Multiple Paired Forward-Inverse Models for Human Motor Learning and Control

Neural Information Processing Systems

Humans demonstrate a remarkable ability to generate accurate and appropriate motor behavior under many different and oftpn uncprtain environmental conditions. This paper describes a new modular approach tohuman motor learning and control, baspd on multiple pairs of inverse (controller) and forward (prpdictor) models. This architecture simultaneously learns the multiple inverse models necessary for control as well as how to select the inverse models appropriate for a given em'ironm0nt. Simulationsof object manipulation demonstrates the ability to learn mUltiple objects, appropriate generalization to novel objects and the inappropriate activation of motor programs based on visual cues, followed by online correction, seen in the "size-weight illusion".


Reinforcement Learning Based on On-Line EM Algorithm

Neural Information Processing Systems

The actor and the critic are approximated by Normalized Gaussian Networks (NGnet), which are networks of local linear regression units. The NGnet is trained by the online EM algorithm proposed in our previous paper.We apply our RL method to the task of swinging-up and stabilizing a single pendulum and the task of balancing a double pendulumnear the upright position.


Temporally Asymmetric Hebbian Learning, Spike liming and Neural Response Variability

Neural Information Processing Systems

Recent experimental data indicate that the strengthening or weakening of synaptic connections between neurons depends on the relative timing of pre-and postsynaptic action potentials. A Hebbian synaptic modification rule based on these data leads to a stable state in which the excitatory and inhibitory inputs to a neuron are balanced, producing an irregular pattern of firing. It has been proposed that neurons in vivo operate in such a mode.


Sparse Code Shrinkage: Denoising by Nonlinear Maximum Likelihood Estimation

Neural Information Processing Systems

Such a representation is closely related to redundancy reductionand independent component analysis, and has some neurophysiological plausibility. In this paper, we show how sparse coding can be used for denoising. Using maximum likelihood estimation of nongaussian variables corrupted by gaussian noise, we show how to apply a shrinkage nonlinearity on the components of sparse coding so as to reduce noise. Furthermore, we show how to choose the optimal sparse coding basis for denoising. Our method is closely related to the method of wavelet shrinkage, but has the important benefit over wavelet methods that both the features and the shrinkage parameters are estimated directly from the data. 1 Introduction A fundamental problem in neural network research is to find a suitable representation forthe data.


Unsupervised and Supervised Clustering: The Mutual Information between Parameters and Observations

Neural Information Processing Systems

Recent works in parameter estimation and neural coding have demonstrated that optimal performance are related to the mutual information between parameters and data. We consider the mutual information in the case where the dependency in the parameter (a vector 8) of the conditional p.d.f. of each observation (a vector


Contrast Adaptation in Simple Cells by Changing the Transmitter Release Probability

Neural Information Processing Systems

Using a recurrent neural network of excitatory spiking neurons with adapting synapses we show that both effects could be explained by a fast and a slow component inthe synaptic adaptation.