Goto

Collaborating Authors

 Country


Leveraging Wikipedia Characteristics for Search and Candidate Generation in Question Answering

AAAI Conferences

Most existing Question Answering (QA) systems adopt a type-and-generate approach to candidate generation that relies on a pre-defined domain ontology. This paper describes a type independent search and candidate generation paradigm for QA that leverages Wikipedia characteristics. This approach is particularly useful for adapting QA systems to domains where reliable answer type identification and type-based answer extraction are not available. We present a three-pronged search approach motivated by relations an answer-justifying title-oriented document may have with the question/answer pair. We further show how Wikipedia metadata such as anchor texts and redirects can be utilized to effectively extract candidate answers from search results without a type ontology. Our experimental results show that our strategies obtained high binary recall in both search and candidate generation on TREC questions, a domain that has mature answer type extraction technology, as well as on Jeopardy! questions, a domain without such technology. Our high-recall search and candidate generation approach has also led to high overall QA performance in Watson, our end-to-end system.


Strategic Information Disclosure to People with Multiple Alternatives

AAAI Conferences

This paper studies how automated agents can persuade humans to behave in certain ways. The motivation behind such agent's behavior resides in the utility function that the agent's designer wants to maximize and which may be different from the user's utility function. Specifically, in the strategic settings studied, the agent provides correct yet partial information about a state of the world that is unknown to the user but relevant to his decision. Persuasion games were designed to study interactions between automated players where one player sends state information to the other to persuade it to behave in a certain way. We show that this game theory based model is not sufficient to model human-agent interactions, since people tend to deviate from the rational choice. We use machine learning to model such deviation in people from this game theory based model. The agent generates a probabilistic description of the world state that maximizes its benefit and presents it to the users. The proposed model was evaluated in an extensive empirical study involving road selection tasks that differ in length, costs and congestion. Results showed that people's behavior indeed deviated significantly from the behavior predicted by the game theory based model. Moreover, the agent developed in our model performed better than an agent that followed the behavior dictated by the game-theoretical models.


Role-Based Ad Hoc Teamwork

AAAI Conferences

An ad hoc team setting is one in which teammates must work together to obtain a common goal, but without any prior agreement regarding how to work together. In this abstract we present a role-based approach for ad hoc teamwork, in which each teammate is inferred to be following a specialized role that accomplishes a specific task or exhibits a particular behavior. In such cases, the role an ad hoc agent should select depends both on its own capabilities and on the roles currently selected by the other team members. We present methods for evaluating the influence of the ad hoc agent's role selection on the team's utility and we examine empirically how to select the best suited method for role assignment in a complex environment. Finally, we show that an appropriate assignment method can be determined from a limited amount of data and used successfully in similar new tasks that the team has not encountered before.


Simulated Annealing Based Influence Maximization in Social Networks

AAAI Conferences

The problem of influence maximization, i.e., mining top-k influential nodes from a social network such that the spread of influence in the network is maximized, is NP-hard. Most of the existing algorithms for the prob- lem are based on greedy algorithm. Although greedy algorithm can achieve a good approximation, it is computational expensive. In this paper, we propose a totally different approach based on Simulated Annealing(SA) for the influence maximization problem. This is the first SA based algorithm for the problem. Additionally, we propose two heuristic methods to accelerate the con- vergence process of SA, and a new method of comput- ing influence to speed up the proposed algorithm. Experimental results on four real networks show that the proposed algorithms run faster than the state-of-the-art greedy algorithm by 2-3 orders of magnitude while being able to improve the accuracy of greedy algorithm.


Mechanism Design for Federated Sponsored Search Auctions

AAAI Conferences

Recently there is an increase in smaller, domain-specific search engines that scour the deep web finding information that general-purpose engines are unable to discover. These search engines play a crucial role in the new generation of search paradigms where federated search engines (FSEs) integrate search results from heterogeneous sources. In this paper we pose, for the first time, the problem to design a revenue mechanism that ensures profits both to individual search engines and FSEs as a mechanism design problem. To this end, we extend the sponsored search auction models and we discuss possibility and impossibility results on the implementation of an incentive compatible mechanism. Specifically, we develop an execution-contingent VCG (where payments depend on the observed click behavior) that satisfies both individual rationality and weak budget balance in expectation.


How to Calibrate the Scores of Biased Reviewers by Quadratic Programming

AAAI Conferences

Peer reviewing is the key ingredient of evaluating the quality of scientific work. Based on the review scores assigned by the individual reviewers to the submissions, program committees of conferences and journal editors decide which papers to accept for publication and which to reject. However, some reviewers may be more rigorous than others, they may be biased one way or the other, and they often have highly subjective preferences over the papers they review. Moreover, each reviewer usually has only a very local view, as he or she evaluates only a small fraction of the submissions. Despite all these shortcomings, the review scores obtained need to be aggregrated in order to globally rank all submissions and to make the acceptance/rejection decision. A common method is to simply take the average of each submission's review scores, possibly weighted by the reviewers' confidence levels. Unfortunately, the global ranking thus produced often suffers a certain unfairness, as the reviewers' biases and limitations are not taken into account. We propose a method for calibrating the scores of reviewers that are potentially biased and blindfolded by having only partial information. Our method uses a maximum likelihood estimator, which estimates both the bias of each individual reviewer and the unknown "ideal" score of each submission. This yields a quadratic program whose solution transforms the individual review scores into calibrated, globally comparable scores. We argue why our method results in a fairer and more reasonable global ranking than simply taking the average of scores. To show its usefulness, we test our method empirically using real-world data.


Understanding Natural Language Commands for Robotic Navigation and Mobile Manipulation

AAAI Conferences

This paper describes a new model for understanding natural language commands given to autonomous systems that perform navigation and mobile manipulation in semi-structured environments. Previous approaches have used models with fixed structure to infer the likelihood of a sequence of actions given the environment and the command. In contrast, our framework, called Generalized Grounding Graphs, dynamically instantiates a probabilistic graphical model for a particular natural language command according to the command's hierarchical and compositional semantic structure. Our system performs inference in the model to successfully find and execute plans corresponding to natural language commands such as "Put the tire pallet on the truck." The model is trained using a corpus of commands collected using crowdsourcing. We pair each command with robot actions and use the corpus to learn the parameters of the model. We evaluate the robot's performance by inferring plans from natural language commands, executing each plan in a realistic robot simulator, and asking users to evaluate the system's performance. We demonstrate that our system can successfully follow many natural language commands from the corpus.


A Closer Look at the Probabilistic Description Logic Prob-EL

AAAI Conferences

We study probabilistic variants of the description logic EL. For the case where probabilities apply only to concepts, we provide a careful analysis of the borderline between tractability and ExpTime-completeness. One outcome is that any probability value except zero and one leads to intractability in the presence of general TBoxes, while this is not the case for classical TBoxes. For the case where probabilities can also be applied to roles, we show PSpace-completeness. This result is (positively) surprising as the best previously known upper bound was 2-ExpTime and there were reasons to believe in completeness for this class.


Transfer Latent Semantic Learning: Microblog Mining with Less Supervision

AAAI Conferences

The increasing volume of information generated on micro-blogging sites such as Twitter raises several challenges to traditional text mining techniques. First, most texts from those sites are abbreviated due to the constraints of limited characters in one post; second, the input usually comes in streams of large-volumes. Therefore, it is of significant importance to develop effective and efficient representations of abbreviated texts for better filtering and mining. In this paper, we introduce a novel transfer learning approach, namely transfer latent semantic learning, that utilizes a large number of related tagged documents with rich information from other sources (source domain) to help build a robust latent semantic space for the abbreviated texts (target domain). This is achieved by simultaneously minimizing the document reconstruction error and the classification error of the labeled examples from the source domain by building a classifier with hinge loss in the latent semantic space. We demonstrate the effectiveness of our method by applying them to the task of classifying and tagging abbreviated texts. Experimental results on both synthetic datasets and real application datasets, including Reuters-21578 and Twitter data, suggest substantial improvements using our approach over existing ones.


A Switching Planner for Combined Task and Observation Planning

AAAI Conferences

From an automated planning perspective the problem of practical mobile robot control in realistic environments poses many important and contrary challenges. On the one hand, the planning process must be lightweight, robust, and timely. Over the lifetime of the robot it must always respond quickly with new plans that accommodate exogenous events, changing objectives, and the underlying unpredictability of the environment. On the other hand, in order to promote efficient behaviours the planning process must perform computationally expensive reasoning about contingencies and possible revisions of subjective beliefs according to quantitatively modelled uncertainty in acting and sensing. Towards addressing these challenges, we develop a continual planning approach that switches between using a fast satisficing "classical" planner, to decide on the overall strategy, and decision-theoretic planning to solve small abstract subproblems where deeper consideration of the sensing model is both practical, and can significantly impact overall performance. We evaluate our approach in large problems from a realistic robot exploration domain.