Goto

Collaborating Authors

 Country


On a Connection between Kernel PCA and Metric Multidimensional Scaling

Neural Information Processing Systems

In this paper we show that the kernel peA algorithm of Sch6lkopf et al (1998) can be interpreted as a form of metric multidimensional scaling (MDS) when the kernel function k(x, y) is isotropic, i.e. it depends only on Ilx - yll. This leads to a metric MDS algorithm where the desired configuration of points is found via the solution of an eigenproblem rather than through the iterative optimization of the stress objective function. The question of kernel choice is also discussed.


Occam's Razor

Neural Information Processing Systems

The Bayesian paradigm apparently only sometimes gives rise to Occam's Razor; at other times very large models perform well. We give simple examples of both kinds of behaviour. The two views are reconciled when measuring complexity of functions, rather than of the machinery used to implement them. We analyze the complexity of functions for some linear in the parameter models that are equivalent to Gaussian Processes, and always find Occam's Razor at work. 1 Introduction Occam's Razor is a well known principle of "parsimony of explanations" which is influential in scientific thinking in general and in problems of statistical inference in particular. In this paper we review its consequences for Bayesian statistical models, where its behaviour can be easily demonstrated and quantified.


Machine Learning for Video-Based Rendering

Neural Information Processing Systems

This work extends the new paradigm for computer animation, video textures, which uses recorded video to generate novel animations by replaying the video samples in a new order. Here we concentrate on video sprites, which are a special type of video texture. In video sprites, instead of storing whole images, the object of interest is separated from the background and the video samples are stored as a sequence of alpha-matted sprites with associated velocity information. They can be rendered anywhere on the screen to create a novel animation of the object. We present methods to create such animations by finding a sequence of sprite samples that is both visually smooth and follows a desired path.



Four-legged Walking Gait Control Using a Neuromorphic Chip Interfaced to a Support Vector Learning Algorithm

Neural Information Processing Systems

To control the walking gaits of a four-legged robot we present a novel neuromorphic VLSI chip that coordinates the relative phasing of the robot's legs similar to how spinal Central Pattern Generators are believed to control vertebrate locomotion [3]. The chip controls the leg movements by driving motors with time varying voltages which are the outputs of a small network of coupled oscillators. The characteristics of the chip's output voltages depend on a set of input parameters. The relationship between input parameters and output voltages can be computed analytically for an idealized system. In practice, however, this ideal relationship is only approximately true due to transistor mismatch and offsets. Fine tuning of the chip's input parameters is done automatically by the robotic system, using an unsupervised Support Vector (SV) learning algorithm introduced recently [7]. The learning requires only that the description of the desired output is given. The machine learns from (unlabeled) examples how to set the parameters to the chip in order to obtain a desired motor behavior.


The Early Word Catches the Weights

Neural Information Processing Systems

The strong correlation between the frequency of words and their naming latency has been well documented. However, as early as 1973, the Age of Acquisition (AoA) of a word was alleged to be the actual variable of interest, but these studies seem to have been ignored in most of the literature. Recently, there has been a resurgence of interest in AoA. While some studies have shown that frequency has no effect when AoA is controlled for, more recent studies have found independent contributions of frequency and AoA. Connectionist models have repeatedly shown strong effects of frequency, but little attention has been paid to whether they can also show AoA effects. Indeed, several researchers have explicitly claimed that they cannot show AoA effects. In this work, we explore these claims using a simple feed forward neural network. We find a significant contribution of AoA to naming latency, as well as conditions under which frequency provides an independent contribution.


Universality and Individuality in a Neural Code

Neural Information Processing Systems

This basic question in the theory of knowledge seems to be beyond the scope of experimental investigation. An accessible version of this question is whether different observers of the same sense data have the same neural representation of these data: how much of the neural code is universal, and how much is individual? Differences in the neural codes of different individuals may arise from various sources: First, different individuals may use different'vocabularies' of coding symbols. Second, they may use the same symbols to encode different stimulus features. Third, they may have different latencies, so they'say' the same things at slightly different times.


APRICODD: Approximate Policy Construction Using Decision Diagrams

Neural Information Processing Systems

We propose a method of approximate dynamic programming for Markov decision processes (MDPs) using algebraic decision diagrams (ADDs). We produce near-optimal value functions and policies with much lower time and space requirements than exact dynamic programming. Our method reduces the sizes of the intermediate value functions generated during value iteration by replacing the values at the terminals of the ADD with ranges of values. Our method is demonstrated on a class of large MDPs (with up to 34 billion states), and we compare the results with the optimal value functions.


Position Variance, Recurrence and Perceptual Learning

Neural Information Processing Systems

Stimulus arrays are inevitably presented at different positions on the retina in visual tasks, even those that nominally require fixation. In particular, this applies to many perceptual learning tasks. We show that perceptual inference or discrimination in the face of positional variance has a structurally different quality from inference about fixed position stimuli, involving a particular, quadratic, non-linearity rather than a purely linear discrimination. We show the advantage taking this non-linearity into account has for discrimination, and suggest it as a role for recurrent connections in area VI, by demonstrating the superior discrimination performance of a recurrent network. We propose that learning the feedforward and recurrent neural connections for these tasks corresponds to the fast and slow components of learning observed in perceptual learning tasks. 1 Introduction The field of perceptual learning in simple, but high precision, visual tasks (such as vernier acuity tasks) has produced many surprising results whose import for models has yet to be fully felt.


Shape Context: A New Descriptor for Shape Matching and Object Recognition

Neural Information Processing Systems

We develop an approach to object recognition based on matching shapes and using a resulting measure of similarity in a nearest neighbor classifier. The key algorithmic problem here is that of finding pointwise correspondences between an image shape and a stored prototype shape. We introduce a new shape descriptor, the shape context, which makes this possible, using a simple and robust algorithm. We demonstrate that shape contexts greatly simplify recovery of correspondences between points of two given shapes. Once shapes are aligned, shape contexts are used to define a robust score for measuring shape similarity. We have used this score in a nearest-neighbor classifier for recognition of hand written digits as well as 3D objects, using exactly the same distance function.