Goto

Collaborating Authors

 Country


The Relaxed Online Maximum Margin Algorithm

Neural Information Processing Systems

We describe a new incremental algorithm for training linear threshold functions: the Relaxed Online Maximum Margin Algorithm, or ROMMA. ROMMA can be viewed as an approximation to the algorithm that repeatedly chooses the hyperplane that classifies previously seen examples correctly with the maximum margin. It is known that such a maximum-margin hypothesis can be computed by minimizing the length of the weight vector subject to a number of linear constraints. ROMMA works by maintaining a relatively simple relaxation of these constraints that can be efficiently updated. We prove a mistake bound for ROMMA that is the same as that proved for the perceptron algorithm. Our analysis implies that the more computationally intensive maximum-margin algorithm also satisfies this mistake bound; this is the first worst-case performance guarantee for this algorithm. We describe some experiments using ROMMA and a variant that updates its hypothesis more aggressively as batch algorithms to recognize handwritten digits. The computational complexity and simplicity of these algorithms is similar to that of perceptron algorithm, but their generalization is much better. We describe a sense in which the performance of ROMMA converges to that of SVM in the limit if bias isn't considered.


Efficient Approaches to Gaussian Process Classification

Neural Information Processing Systems

The first two methods are related to mean field ideas known in Statistical Physics. The third approach is based on Bayesian online approach which was motivated by recent results in the Statistical Mechanics of Neural Networks. We present simulation results showing: 1. that the mean field Bayesian evidence may be used for hyperparameter tuning and 2. that the online approach may achieve a low training error fast. 1 Introduction Gaussian processes provide promising nonparametric Bayesian approaches to regression and classification [2, 1].


Hierarchical Image Probability (H1P) Models

Neural Information Processing Systems

We formulate a model for probability distributions on image spaces. We show that any distribution of images can be factored exactly into conditional distributions of feature vectors at one resolution (pyramid level) conditioned on the image information at lower resolutions. We would like to factor this over positions in the pyramid levels to make it tractable, but such factoring may miss long-range dependencies. To fix this, we introduce hidden class labels at each pixel in the pyramid. The result is a hierarchical mixture of conditional probabilities, similar to a hidden Markov model on a tree. The model parameters can be found with maximum likelihood estimation using the EM algorithm. We have obtained encouraging preliminary results on the problems of detecting various objects in SAR images and target recognition in optical aerial images. 1 Introduction


Regular and Irregular Gallager-zype Error-Correcting Codes

Neural Information Processing Systems

The performance of regular and irregular Gallager-type errorcorrecting code is investigated via methods of statistical physics. The transmitted codeword comprises products of the original message bits selected by two randomly-constructed sparse matrices; the number of nonzero row/column elements in these matrices constitutes a family of codes. We show that Shannon's channel capacity may be saturated in equilibrium for many of the regular codes while slightly lower performance is obtained for others which may be of higher practical relevance. Decoding aspects are considered by employing the TAP approach which is identical to the commonly used belief-propagation-based decoding. We show that irregular codes may saturate Shannon's capacity but with improved dynamical properties. 1 Introduction The ever increasing information transmission in the modern world is based on reliably communicating messages through noisy transmission channels; these can be telephone lines, deep space, magnetic storing media etc. Error-correcting codes play a significant role in correcting errors incurred during transmission; this is carried out by encoding the message prior to transmission and decoding the corrupted received code-word for retrieving the original message.


Effects of Spatial and Temporal Contiguity on the Acquisition of Spatial Information

Neural Information Processing Systems

Spatial information comes in two forms: direct spatial information (for example, retinal position) and indirect temporal contiguity information, since objects encountered sequentially are in general spatially close. The acquisition of spatial information by a neural network is investigated here. Given a spatial layout of several objects, networks are trained on a prediction task. Networks using temporal sequences with no direct spatial information are found to develop internal representations that show distances correlated with distances in the external layout. The influence of spatial information is analyzed by providing direct spatial information to the system during training that is either consistent with the layout or inconsistent with it. This approach allows examination of the relative contributions of spatial and temporal contiguity.


An Environment Model for Nonstationary Reinforcement Learning

Neural Information Processing Systems

Reinforcement learning in nonstationary environments is generally regarded as an important and yet difficult problem. This paper partially addresses the problem by formalizing a subclass of nonstationary environments. The environment model, called hidden-mode Markov decision process (HM-MDP), assumes that environmental changes are always confined to a small number of hidden modes.


Unmixing Hyperspectral Data

Neural Information Processing Systems

In hyperspectral imagery one pixel typically consists of a mixture of the reflectance spectra of several materials, where the mixture coefficients correspond to the abundances of the constituting materials. We assume linear combinations of reflectance spectra with some additive normal sensor noise and derive a probabilistic MAP framework for analyzing hyperspectral data. As the material reflectance characteristics are not know a priori, we face the problem of unsupervised linear unmixing.


On Input Selection with Reversible Jump Markov Chain Monte Carlo Sampling

Neural Information Processing Systems

In this paper we will treat input selection for a radial basis function (RBF) like classifier within a Bayesian framework. We approximate the a-posteriori distribution over both model coefficients and input subsets by samples drawn with Gibbs updates and reversible jump moves. Using some public datasets, we compare the classification accuracy of the method with a conventional ARD scheme. These datasets are also used to infer the a-posteriori probabilities of different input subsets. 1 Introduction Methods that aim to determine relevance of inputs have always interested researchers in various communities. Classical feature subset selection techniques, as reviewed in [1], use search algorithms and evaluation criteria to determine one optimal subset.


An MEG Study of Response Latency and Variability in the Human Visual System During a Visual-Motor Integration Task

Neural Information Processing Systems

Human reaction times during sensory-motor tasks vary considerably. To begin to understand how this variability arises, we examined neuronal populational response time variability at early versus late visual processing stages. The conventional view is that precise temporal information is gradually lost as information is passed through a layered network of mean-rate "units." We tested in humans whether neuronal populations at different processing stages behave like mean-rate "units". A blind source separation algorithm was applied to MEG signals from sensory-motor integration tasks. Response time latency and variability for multiple visual sources were estimated by detecting single-trial stimulus-locked events for each source.


Wiring Optimization in the Brain

Neural Information Processing Systems

The complexity of cortical circuits may be characterized by the number of synapses per neuron. We study the dependence of complexity on the fraction of the cortical volume that is made up of "wire" (that is, ofaxons and dendrites), and find that complexity is maximized when wire takes up about 60% of the cortical volume. This prediction is in good agreement with experimental observations. A consequence of our arguments is that any rearrangement of neurons that takes more wire would sacrifice computational power.