Goto

Collaborating Authors

 Country


Linear Combinations of Optic Flow Vectors for Estimating Self-Motion - a Real-World Test of a Neural Model

Neural Information Processing Systems

The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion. In this study, we examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an estimator consisting of a linear combination of optic flow vectors that incorporates prior knowledge both about the distance distribution of the environment, and about the noise and self-motion statistics of the sensor. The estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates turn out to be less reliable.



Adaptive Classification by Variational Kalman Filtering

Neural Information Processing Systems

We propose in this paper a probabilistic approach for adaptive inference of generalized nonlinear classification that combines the computational advantage of a parametric solution with the flexibility of sequential sampling techniques. We regard the parameters of the classifier as latent states in a first order Markov process and propose an algorithm which can be regarded as variational generalization of standard Kalman filtering. The variational Kalman filter is based on two novel lower bounds that enable us to use a non-degenerate distribution over the adaptation rate. An extensive empirical evaluation demonstrates that the proposed method is capable of infering competitive classifiers both in stationary and non-stationary environments. Although we focus on classification, the algorithm is easily extended to other generalized nonlinear models.


Reinforcement Learning to Play an Optimal Nash Equilibrium in Team Markov Games

Neural Information Processing Systems

Multiagent learning is a key problem in AI. In the presence of multiple Nash equilibria, even agents with non-conflicting interests may not be able to learn an optimal coordination policy. The problem is exaccerbated if the agents do not know the game and independently receive noisy payoffs. So, multiagent reinforfcement learning involves two interrelated problems: identifying the game and learning to play.


A Prototype for Automatic Recognition of Spontaneous Facial Actions

Neural Information Processing Systems

Spontaneous facial expressions differ substantially from posed expressions, similar to how continuous, spontaneous speech differs from isolated words produced on command. Previous methods for automatic facial expression recognition assumed images were collected in controlled environments in which the subjects deliberately faced the camera. Since people often nod or turn their heads, automatic recognition of spontaneous facial behavior requires methods for handling out-of-image-plane head rotations. Here we explore an approach based on 3-D warping of images into canonical views. We evaluated the performance of the approach as a front-end for a spontaneous expression recognition system using support vector machines and hidden Markov models. This system employed general purpose learning mechanisms that can be applied to recognition of any facial movement. The system was tested for recognition of a set of facial actions defined by the Facial Action Coding System (FACS). We showed that 3D tracking and warping followed by machine learning techniques directly applied to the warped images, is a viable and promising technology for automatic facial expression recognition. One exciting aspect of the approach presented here is that information about movement dynamics emerged out of filters which were derived from the statistics of images.


Global Versus Local Methods in Nonlinear Dimensionality Reduction

Neural Information Processing Systems

Recently proposed algorithms for nonlinear dimensionality reduction fall broadly into two categories which have different advantages and disadvantages: global (Isomap [1]), and local (Locally Linear Embedding [2], Laplacian Eigenmaps [3]). We present two variants of Isomap which combine the advantages of the global approach with what have previously been exclusive advantages of local methods: computational sparsity and the ability to invert conformal maps.


Real-Time Monitoring of Complex Industrial Processes with Particle Filters

Neural Information Processing Systems

We consider two ubiquitous processes: an industrial dryer and a level tank. For these applications, we compared three particle filtering variants: standard particle filtering, Rao-Blackwellised particle filtering and a version of Rao-Blackwellised particle filtering that does one-step look-ahead to select good sampling regions. We show that the overhead of the extra processing per particle of the more sophisticated methods is more than compensated by the decrease in error and variance.



Going Metric: Denoising Pairwise Data

Neural Information Processing Systems

Pairwise data in empirical sciences typically violate metricity, either due to noise or due to fallible estimates, and therefore are hard to analyze by conventional machine learning technology. In this paper we therefore study ways to work around this problem. First, we present an alternative embedding to multidimensional scaling (MDS) that allows us to apply a variety of classical machine learning and signal processing algorithms. The class of pairwise grouping algorithms which share the shift-invariance property is statistically invariant under this embedding procedure, leading to identical assignments of objects to clusters. Based on this new vectorial representation, denoising methods are applied in a second step. Both steps provide a theoretically well controlled setup to translate from pairwise data to the respective denoised metric representation. We demonstrate the practical usefulness of our theoretical reasoning by discovering structure in protein sequence data bases, visibly improving performance upon existing automatic methods. 1 Introduction Unsupervised grouping or clustering aims at extracting hidden structure from data (see e.g.


How the Poverty of the Stimulus Solves the Poverty of the Stimulus

Neural Information Processing Systems

Language acquisition is a special kind of learning problem because the outcome of learning of one generation is the input for the next. That makes it possible for languages to adapt to the particularities of the learner. In this paper, I show that this type of language change has important consequences for models of the evolution and acquisition of syntax.