Country
Memristor Crossbar-based Hardware Implementation of IDS Method
Merrikh-Bayat, Farnood, Bagheri-Shouraki, Saeed, Rohani, Ali
Ink Drop Spread (IDS) is the engine of Active Learning Method (ALM), which is the methodology of soft computing. IDS, as a pattern-based processing unit, extracts useful information from a system subjected to modeling. In spite of its excellent potential in solving problems such as classification and modeling compared to other soft computing tools, finding its simple and fast hardware implementation is still a challenge. This paper describes a new hardware implementation of IDS method based on the memristor crossbar structure. In addition of simplicity, being completely real-time, having low latency and the ability to continue working after the occurrence of power breakdown are some of the advantages of our proposed circuit.
Automatable Evaluation Method Oriented toward Behaviour Believability for Video Games
Tencรฉ, Fabien, Buche, Cรฉdric
Classic evaluation methods of believable agents are time-consuming because they involve many human to judge agents. They are well suited to validate work on new believable behaviours models. However, during the implementation, numerous experiments can help to improve agents' believability. We propose a method which aim at assessing how much an agent's behaviour looks like humans' behaviours. By representing behaviours with vectors, we can store data computed for humans and then evaluate as many agents as needed without further need of humans. We present a test experiment which shows that even a simple evaluation following our method can reveal differences between quite believable agents and humans. This method seems promising although, as shown in our experiment, results' analysis can be difficult.
Solving the Resource Constrained Project Scheduling Problem with Generalized Precedences by Lazy Clause Generation
Schutt, Andreas, Feydy, Thibaut, Stuckey, Peter J., Wallace, Mark G.
The technical report presents a generic exact solution approach for minimizing the project duration of the resource-constrained project scheduling problem with generalized precedences (Rcpsp/max). The approach uses lazy clause generation, i.e., a hybrid of finite domain and Boolean satisfiability solving, in order to apply nogood learning and conflict-driven search on the solution generation. Our experiments show the benefit of lazy clause generation for finding an optimal solutions and proving its optimality in comparison to other state-of-the-art exact and non-exact methods. The method is highly robust: it matched or bettered the best known results on all of the 2340 instances we examined except 3, according to the currently available data on the PSPLib. Of the 631 open instances in this set it closed 573 and improved the bounds of 51 of the remaining 58 instances.
Optimizing Selective Search in Chess
David-Tabibi, Omid, Koppel, Moshe, Netanyahu, Nathan S.
In this paper we introduce a novel method for automatically tuning the search parameters of a chess program using genetic algorithms. Our results show that a large set of parameter values can be learned automatically, such that the resulting performance is comparable with that of manually tuned parameters of top tournament-playing chess programs.
The Challenge of Believability in Video Games: Definitions, Agents Models and Imitation Learning
Tencรฉ, Fabien, Buche, Cรฉdric, De Loor, Pierre, Marc, Olivier
In this paper, we address the problem of creating believable agents (virtual characters) in video games. We consider only one meaning of believability, ``giving the feeling of being controlled by a player'', and outline the problem of its evaluation. We present several models for agents in games which can produce believable behaviours, both from industry and research. For high level of believability, learning and especially imitation learning seems to be the way to go. We make a quick overview of different approaches to make video games' agents learn from players. To conclude we propose a two-step method to develop new models for believable agents. First we must find the criteria for believability for our application and define an evaluation method. Then the model and the learning algorithm can be designed.
A PAC-Bayesian Analysis of Graph Clustering and Pairwise Clustering
We formulate weighted graph clustering as a prediction problem: given a subset of edge weights we analyze the ability of graph clustering to predict the remaining edge weights. This formulation enables practical and theoretical comparison of different approaches to graph clustering as well as comparison of graph clustering with other possible ways to model the graph. We adapt the PAC-Bayesian analysis of co-clustering (Seldin and Tishby, 2008; Seldin, 2009) to derive a PAC-Bayesian generalization bound for graph clustering. The bound shows that graph clustering should optimize a trade-off between empirical data fit and the mutual information that clusters preserve on the graph nodes. A similar trade-off derived from information-theoretic considerations was already shown to produce state-of-the-art results in practice (Slonim et al., 2005; Yom-Tov and Slonim, 2009). This paper supports the empirical evidence by providing a better theoretical foundation, suggesting formal generalization guarantees, and offering a more accurate way to deal with finite sample issues. We derive a bound minimization algorithm and show that it provides good results in real-life problems and that the derived PAC-Bayesian bound is reasonably tight.
Progress in Computer-Assisted Inductive Theorem Proving by Human-Orientedness and Descente Infinie?
In this short position paper we briefly review the development history of automated inductive theorem proving and computer-assisted mathematical induction. We think that the current low expectations on progress in this field result from a faulty narrow-scope historical projection. Our main motivation is to explain--on an abstract but hopefully sufficiently descriptive level--why we believe that future progress in the field is to result from human-orientedness and descente infinie.
Not only a lack of right definitions: Arguments for a shift in information-processing paradigm
Machine Consciousness and Machine Intelligence are not simply new buzzwords that occupy our imagination. Over the last decades, we witness an unprecedented rise in attempts to create machines with human-like features and capabilities. However, despite widespread sympathy and abundant funding, progress in these enterprises is far from being satisfactory. The reasons for this are twofold: First, the notions of cognition and intelligence (usually borrowed from human behavior studies) are notoriously blurred and ill-defined, and second, the basic concepts underpinning the whole discourse are by themselves either undefined or defined very vaguely. That leads to improper and inadequate research goals determination, which I will illustrate with some examples drawn from recent documents issued by DARPA and the European Commission. On the other hand, I would like to propose some remedies that, I hope, would improve the current state-of-the-art disgrace.
Mixed Cumulative Distribution Networks
Silva, Ricardo, Blundell, Charles, Teh, Yee Whye
Directed acyclic graphs (DAGs) are a popular framework to express multivariate probability distributions. Acyclic directed mixed graphs (ADMGs) are generalizations of DAGs that can succinctly capture much richer sets of conditional independencies, and are especially useful in modeling the effects of latent variables implicitly. Unfortunately there are currently no good parameterizations of general ADMGs. In this paper, we apply recent work on cumulative distribution networks and copulas to propose one one general construction for ADMG models. We consider a simple parameter estimation approach, and report some encouraging experimental results.
Learning Multi-modal Similarity
In many applications involving multi-media data, the definition of similarity between items is integral to several key tasks, e.g., nearest-neighbor retrieval, classification, and recommendation. Data in such regimes typically exhibits multiple modalities, such as acoustic and visual content of video. Integrating such heterogeneous data to form a holistic similarity space is therefore a key challenge to be overcome in many real-world applications. We present a novel multiple kernel learning technique for integrating heterogeneous data into a single, unified similarity space. Our algorithm learns an optimal ensemble of kernel transfor- mations which conform to measurements of human perceptual similarity, as expressed by relative comparisons. To cope with the ubiquitous problems of subjectivity and inconsistency in multi- media similarity, we develop graph-based techniques to filter similarity measurements, resulting in a simplified and robust training procedure.