Goto

Collaborating Authors

 Country


Incremental Variational Inference for Latent Dirichlet Allocation

arXiv.org Machine Learning

We introduce incremental variational inference and apply it to latent Dirichlet allocation (LDA). Incremental variational inference is inspired by incremental EM and provides an alternative to stochastic variational inference. Incremental LDA can process massive document collections, does not require to set a learning rate, converges faster to a local optimum of the variational bound and enjoys the attractive property of monotonically increasing it. We study the performance of incremental LDA on large benchmark data sets. We further introduce a stochastic approximation of incremental variational inference which extends to the asynchronous distributed setting. The resulting distributed algorithm achieves comparable performance as single host incremental variational inference, but with a significant speed-up.


Evaluation of Spectral Learning for the Identification of Hidden Markov Models

arXiv.org Machine Learning

Hidden Markov models have successfully been applied as models of discrete time series in many fields. Often, when applied in practice, the parameters of these models have to be estimated. The currently predominating identification methods, such as maximum-likelihood estimation and especially expectation-maximization, are iterative and prone to have problems with local minima. A non-iterative method employing a spectral subspace-like approach has recently been proposed in the machine learning literature. This paper evaluates the performance of this algorithm, and compares it to the performance of the expectation-maximization algorithm, on a number of numerical examples. We find that the performance is mixed; it successfully identifies some systems with relatively few available observations, but fails completely for some systems even when a large amount of observations is available. An open question is how this discrepancy can be explained. We provide some indications that it could be related to how well-conditioned some system parameters are.


MixEst: An Estimation Toolbox for Mixture Models

arXiv.org Machine Learning

Mixture models are powerful statistical models used in many applications ranging from density estimation to clustering and classification. When dealing with mixture models, there are many issues that the experimenter should be aware of and needs to solve. The MixEst toolbox is a powerful and user-friendly package for MATLAB that implements several state-of-the-art approaches to address these problems. Additionally, MixEst gives the possibility of using manifold optimization for fitting the density model, a feature specific to this toolbox. MixEst simplifies using and integration of mixture models in statistical models and applications. For developing mixture models of new densities, the user just needs to provide a few functions for that statistical distribution and the toolbox takes care of all the issues regarding mixture models. MixEst is available at visionlab.ut.ac.ir/mixest and is fully documented and is licensed under GPL.


Banzhaf Random Forests

arXiv.org Machine Learning

Random forests are a type of ensemble method which makes predictions by combining the results of several independent trees. However, the theory of random forests has long been outpaced by their application. In this paper, we propose a novel random forests algorithm based on cooperative game theory. Banzhaf power index is employed to evaluate the power of each feature by traversing possible feature coalitions. Unlike the previously used information gain rate of information theory, which simply chooses the most informative feature, the Banzhaf power index can be considered as a metric of the importance of each feature on the dependency among a group of features. More importantly, we have proved the consistency of the proposed algorithm, named Banzhaf random forests (BRF). This theoretical analysis takes a step towards narrowing the gap between the theory and practice of random forests for classification problems. Experiments on several UCI benchmark data sets show that BRF is competitive with state-of-the-art classifiers and dramatically outperforms previous consistent random forests. Particularly, it is much more efficient than previous consistent random forests.


The Population Posterior and Bayesian Inference on Streams

arXiv.org Machine Learning

Many modern data analysis problems involve inferences from streaming data. However, streaming data is not easily amenable to the standard probabilistic modeling approaches, which assume that we condition on finite data. We develop population variational Bayes, a new approach for using Bayesian modeling to analyze streams of data. It approximates a new type of distribution, the population posterior, which combines the notion of a population distribution of the data with Bayesian inference in a probabilistic model. We study our method with latent Dirichlet allocation and Dirichlet process mixtures on several large-scale data sets.


Elastic Net Procedure for Partially Linear Models

arXiv.org Machine Learning

Variable selection plays an important role in the high-dimensional data analysis. However the high-dimensional data often induces the strongly correlated variables problem. In this paper, we propose Elastic Net procedure for partially linear models and prove the group effect of its estimate. By a simulation study, we show that the strongly correlated variables problem can be better handled by the Elastic Net procedure than Lasso, ALasso and Ridge. Based on an empirical analysis, we can get that the Elastic Net procedure is particularly useful when the number of predictors $p$ is much bigger than the sample size $n$.


On the Worst-Case Approximability of Sparse PCA

arXiv.org Machine Learning

It is well known that Sparse PCA (Sparse Principal Component Analysis) is NP-hard to solve exactly on worst-case instances. What is the complexity of solving Sparse PCA approximately? Our contributions include: 1) a simple and efficient algorithm that achieves an $n^{-1/3}$-approximation; 2) NP-hardness of approximation to within $(1-\varepsilon)$, for some small constant $\varepsilon > 0$; 3) SSE-hardness of approximation to within any constant factor; and 4) an $\exp\exp\left(\Omega\left(\sqrt{\log \log n}\right)\right)$ ("quasi-quasi-polynomial") gap for the standard semidefinite program.


Gradient Importance Sampling

arXiv.org Machine Learning

Adaptive Monte Carlo schemes developed over the last years usually seek to ensure ergodicity of the sampling process in line with MCMC tradition. This poses constraints on what is possible in terms of adaptation. In the general case ergodicity can only be guaranteed if adaptation is diminished at a certain rate. Importance Sampling approaches offer a way to circumvent this limitation and design sampling algorithms that keep adapting. Here I present a gradient informed variant of SMC (and its special case Population Monte Carlo) for static problems.


Gene expression modelling across multiple cell-lines with MapReduce

arXiv.org Machine Learning

With the wealth of high-throughput sequencing data generated by recent large-scale consortia, predictive gene expression modelling has become an important tool for integrative analysis of transcriptomic and epigenetic data. However, sequencing data-sets are characteristically large, and previously modelling frameworks are typically inefficient and unable to leverage multi-core or distributed processing architectures. In this study, we detail an efficient and parallelised MapReduce implementation of gene expression modelling. We leverage the computational efficiency of this framework to provide an integrative analysis of over fifty histone modification data-sets across a variety of cancerous and non-cancerous cell-lines. Our results demonstrate that the genome-wide relationships between histone modifications and mRNA transcription are lineage, tissue and karyotype-invariant, and that models trained on matched epigenetic/transcriptomic data from non-cancerous cell-lines are able to predict cancerous expression with equivalent genome-wide fidelity.


Kernel convolution model for decoding sounds from time-varying neural responses

arXiv.org Machine Learning

In this study we present a kernel based convolution model to characterize neural responses to natural sounds by decoding their time-varying acoustic features. The model allows to decode natural sounds from high-dimensional neural recordings, such as magnetoencephalography (MEG), that track timing and location of human cortical signalling noninvasively across multiple channels. We used the MEG responses recorded from subjects listening to acoustically different environmental sounds. By decoding the stimulus frequencies from the responses, our model was able to accurately distinguish between two different sounds that it had never encountered before with 70% accuracy. Convolution models typically decode frequencies that appear at a certain time point in the sound signal by using neural responses from that time point until a certain fixed duration of the response. Using our model, we evaluated several fixed durations (time-lags) of the neural responses and observed auditory MEG responses to be most sensitive to spectral content of the sounds at time-lags of 250 ms to 500 ms. The proposed model should be useful for determining what aspects of natural sounds are represented by high-dimensional neural responses and may reveal novel properties of neural signals.