Goto

Collaborating Authors

 Tasmania


Land Surface Temperature Super-Resolution with a Scale-Invariance-Free Neural Approach: Application to MODIS

arXiv.org Artificial Intelligence

Due to the trade-off between the temporal and spatial resolution of thermal spaceborne sensors, super-resolution methods have been developed to provide fine-scale Land SurfaceTemperature (LST) maps. Most of them are trained at low resolution but applied at fine resolution, and so they require a scale-invariance hypothesis that is not always adapted. Themain contribution of this work is the introduction of a Scale-Invariance-Free approach for training Neural Network (NN) models, and the implementation of two NN models, calledScale-Invariance-Free Convolutional Neural Network for Super-Resolution (SIF-CNN-SR) for the super-resolution of MODIS LST products. The Scale-Invariance-Free approach consists ontraining the models in order to provide LST maps at high spatial resolution that recover the initial LST when they are degraded at low resolution and that contain fine-scale texturesinformed by the high resolution NDVI. The second contribution of this work is the release of a test database with ASTER LST images concomitant with MODIS ones that can be usedfor evaluation of super-resolution algorithms. We compare the two proposed models, SIF-CNN-SR1 and SIF-CNN-SR2, with four state-of-the-art methods, Bicubic, DMS, ATPRK, Tsharp,and a CNN sharing the same architecture as SIF-CNN-SR but trained under the scale-invariance hypothesis. We show that SIF-CNN-SR1 outperforms the state-of-the-art methods and the other two CNN models as evaluated with LPIPS and Fourier space metrics focusing on the analysis of textures. These results and the available ASTER-MODIS database for evaluation are promising for future studies on super-resolution of LST.


From Federated Learning to Quantum Federated Learning for Space-Air-Ground Integrated Networks

arXiv.org Artificial Intelligence

6G wireless networks are expected to provide seamless and data-based connections that cover space-air-ground and underwater networks. As a core partition of future 6G networks, Space-Air-Ground Integrated Networks (SAGIN) have been envisioned to provide countless real-time intelligent applications. To realize this, promoting AI techniques into SAGIN is an inevitable trend. Due to the distributed and heterogeneous architecture of SAGIN, federated learning (FL) and then quantum FL are emerging AI model training techniques for enabling future privacy-enhanced and computation-efficient SAGINs. In this work, we explore the vision of using FL/QFL in SAGINs. We present a few representative applications enabled by the integration of FL and QFL in SAGINs. A case study of QFL over UAV networks is also given, showing the merit of quantum-enabled training approach over the conventional FL benchmark. Research challenges along with standardization for QFL adoption in future SAGINs are also highlighted.


Watch a huge 'No Boys Allowed' shark slumber party

Popular Science

It appears that no boy sharks were invited to this gathering of sleeping female Port Jackson sharks (Heterodontus portusjacksoni) in Australia. The fish were spotted snuggled up along the seafloor at Beagle Marine Park in the central Bass Strait. "There were thousands of sharks tightly packed like a carpet spread across the seafloor," voyage leader and University of Tasmania quantitative marine spatial ecologist Jacquomo Monk said in a statement. "Port Jackson sharks grow to 1.65 meters [5.4 feet] in length and are found across southern Australia." Scientists supported by Australia's National Environmental Science Program from the South Australian Research and Development Institute's research vessel MRV Ngerin were operating an underwater robot when they spotted and recorded the gathering.


Towards Fine-Grained Citation Evaluation in Generated Text: A Comparative Analysis of Faithfulness Metrics

arXiv.org Artificial Intelligence

Large language models (LLMs) often produce unsupported or unverifiable information, known as "hallucinations." To mitigate this, retrieval-augmented LLMs incorporate citations, grounding the content in verifiable sources. Despite such developments, manually assessing how well a citation supports the associated statement remains a major challenge. Previous studies use faithfulness metrics to estimate citation support automatically but are limited to binary classification, overlooking fine-grained citation support in practical scenarios. To investigate the effectiveness of faithfulness metrics in fine-grained scenarios, we propose a comparative evaluation framework that assesses the metric effectiveness in distinguishinging citations between three-category support levels: full, partial, and no support. Our framework employs correlation analysis, classification evaluation, and retrieval evaluation to measure the alignment between metric scores and human judgments comprehensively. Our results show no single metric consistently excels across all evaluations, revealing the complexity of assessing fine-grained support. Based on the findings, we provide practical recommendations for developing more effective metrics.


Detecting Endangered Marine Species in Autonomous Underwater Vehicle Imagery Using Point Annotations and Few-Shot Learning

arXiv.org Artificial Intelligence

One use of Autonomous Underwater Vehicles (AUVs) is the monitoring of habitats associated with threatened, endangered and protected marine species, such as the handfish of Tasmania, Australia. Seafloor imagery collected by AUVs can be used to identify individuals within their broader habitat context, but the sheer volume of imagery collected can overwhelm efforts to locate rare or cryptic individuals. Machine learning models can be used to identify the presence of a particular species in images using a trained object detector, but the lack of training examples reduces detection performance, particularly for rare species that may only have a small number of examples in the wild. In this paper, inspired by recent work in few-shot learning, images and annotations of common marine species are exploited to enhance the ability of the detector to identify rare and cryptic species. Annotated images of six common marine species are used in two ways. Firstly, the common species are used in a pre-training step to allow the backbone to create rich features for marine species. Secondly, a copy-paste operation is used with the common species images to augment the training data. While annotations for more common marine species are available in public datasets, they are often in point format, which is unsuitable for training an object detector. A popular semantic segmentation model efficiently generates bounding box annotations for training from the available point annotations. Our proposed framework is applied to AUV images of handfish, increasing average precision by up to 48\% compared to baseline object detection training. This approach can be applied to other objects with low numbers of annotations and promises to increase the ability to actively monitor threatened, endangered and protected species.


Earth's Black Box: 32ft steel monolith will be built in Tasmania this YEAR and filled with hard drives documenting our climate change actions as an 'unbiased account of the events that lead to the demise of the planet'

Daily Mail - Science & tech

If humanity is obliterated by climate change, how will we even know it's happened? That's the question being answered by Australian scientists, who are building Earth's Black Box – a 32-foot-long steel monolith that captures data about our planet. It'll be filled with hard drives that constantly document climate change, giving an'unbiased account of events' that lead to Earth's demise. In the event of a climate apocalypse, it will provide a document of how humanity failed to avoid the disaster – as long as there's someone or something around to access it. Artist impressions suggest it will have a similar aura to the mysterious monolith in Stanley Kubrick's sci-fi film '2001: A Space Odyssey'.


What makes a small-world network? Leveraging machine learning for the robust prediction and classification of networks

arXiv.org Machine Learning

Real-world network data derived from physical systems such as ecological food webs, biochemical pathways, genetic interactions, animal social behavior, and biological processes, captures complex relationships and addresses fundamental questions about species adaptability, ecosystem dynamics, pathogen dynamics, social dynamics, and genetic regulatory networks [3, 10, 18, 19, 29, 34]. The multi-dimensional nature and dynamic interactions among variables over time in these systems pose a challenge to their classification. Traditional classification methods (such as decision trees, support vector machines, k-nearest neighbor, and logistic regression) struggle to capture these complexities effectively [2, 27, 48, 52].


Detecting misinformation through Framing Theory: the Frame Element-based Model

arXiv.org Artificial Intelligence

In this paper, we delve into the rapidly evolving challenge of misinformation detection, with a specific focus on the nuanced manipulation of narrative frames - an under-explored area within the AI community. The potential for Generative AI models to generate misleading narratives underscores the urgency of this problem. Drawing from communication and framing theories, we posit that the presentation or 'framing' of accurate information can dramatically alter its interpretation, potentially leading to misinformation. We highlight this issue through real-world examples, demonstrating how shifts in narrative frames can transmute fact-based information into misinformation. To tackle this challenge, we propose an innovative approach leveraging the power of pre-trained Large Language Models and deep neural networks to detect misinformation originating from accurate facts portrayed under different frames. These advanced AI techniques offer unprecedented capabilities in identifying complex patterns within unstructured data critical for examining the subtleties of narrative frames. The objective of this paper is to bridge a significant research gap in the AI domain, providing valuable insights and methodologies for tackling framing-induced misinformation, thus contributing to the advancement of responsible and trustworthy AI technologies. Several experiments are intensively conducted and experimental results explicitly demonstrate the various impact of elements of framing theory proving the rationale of applying framing theory to increase the performance in misinformation detection.


Deep graphical regression for jointly moderate and extreme Australian wildfires

arXiv.org Machine Learning

Recent wildfires in Australia have led to considerable economic loss and property destruction, and there is increasing concern that climate change may exacerbate their intensity, duration, and frequency. Hazard quantification for extreme wildfires is an important component of wildfire management, as it facilitates efficient resource distribution, adverse effect mitigation, and recovery efforts. However, although extreme wildfires are typically the most impactful, both small and moderate fires can still be devastating to local communities and ecosystems. Therefore, it is imperative to develop robust statistical methods to reliably model the full distribution of wildfire spread. We do so for a novel dataset of Australian wildfires from 1999 to 2019, and analyse monthly spread over areas approximately corresponding to Statistical Areas Level 1 and 2 (SA1/SA2) regions. Given the complex nature of wildfire ignition and spread, we exploit recent advances in statistical deep learning and extreme value theory to construct a parametric regression model using graph convolutional neural networks and the extended generalized Pareto distribution, which allows us to model wildfire spread observed on an irregular spatial domain. We highlight the efficacy of our newly proposed model and perform a wildfire hazard assessment for Australia and population-dense communities, namely Tasmania, Sydney, Melbourne, and Perth.


BHEISR: Nudging from Bias to Balance -- Promoting Belief Harmony by Eliminating Ideological Segregation in Knowledge-based Recommendations

arXiv.org Artificial Intelligence

In the realm of personalized recommendation systems, the increasing concern is the amplification of belief imbalance and user biases, a phenomenon primarily attributed to the filter bubble. Addressing this critical issue, we introduce an innovative intermediate agency (BHEISR) between users and existing recommendation systems to attenuate the negative repercussions of the filter bubble effect in extant recommendation systems. The main objective is to strike a belief balance for users while minimizing the detrimental influence caused by filter bubbles. The BHEISR model amalgamates principles from nudge theory while upholding democratic and transparent principles. It harnesses user-specific category information to stimulate curiosity, even in areas users might initially deem uninteresting. By progressively stimulating interest in novel categories, the model encourages users to broaden their belief horizons and explore the information they typically overlook. Our model is time-sensitive and operates on a user feedback loop. It utilizes the existing recommendation algorithm of the model and incorporates user feedback from the prior time frame. This approach endeavors to transcend the constraints of the filter bubble, enrich recommendation diversity, and strike a belief balance among users while also catering to user preferences and system-specific business requirements. To validate the effectiveness and reliability of the BHEISR model, we conducted a series of comprehensive experiments with real-world datasets. These experiments compared the performance of the BHEISR model against several baseline models using nearly 200 filter bubble-impacted users as test subjects. Our experimental results conclusively illustrate the superior performance of the BHEISR model in mitigating filter bubbles and balancing user perspectives.